The Effects of Harmonic Drive Gears on Robot Dynamics

Author(s):  
Tsung-Chieh Lin ◽  
K. Harold Yae

Abstract Mathematical models of the harmonic drive have been developed, and their effects on manipulator dynamics have been examined. The harmonic drive is modelled as a flexible gear with a high gear reduction ratio. The recursive Newton-Euler dynamic formulation is applied to deriving the system equations of motion that include the effects of the geared actuation. The equations include not only the nonlinear dynamic coupling between rotors and links but the gyroscopic effect due to the spinning rotors. Different modelling assumptions creates four models and their time responses are compared. As an example, a seven degree of freedom robot was chosen to make comparisons in time responses.

1955 ◽  
Vol 22 (4) ◽  
pp. 573-578
Author(s):  
P. H. McDonald

Abstract This investigation treats the vibration of a uniform beam with hinged ends which are restrained, and which has arbitrary initial conditions of motion. A representative example is discussed in which the beam is subjected to a concentrated lateral force at the mid-point of its span and released from rest at the deflected position. The equations of motion are found to be inherently nonlinear, even for small vibrations, and there is dynamic coupling of the modes. It is found that the frequencies of the various modes are functionally related to the initial conditions, particularly the amplitudes of all the modes.


2014 ◽  
Vol 670-671 ◽  
pp. 764-768 ◽  
Author(s):  
Vladimir I. Andreev ◽  
O.V. Mkrtychev ◽  
Guram A. Dzhinchvelashvili

This article suggests methods of calculations of buildings and structures responsible for specific effects on the basis of nonlinear dynamic methods. Example of calculations wide-span structures in the time domain by direct integration of equations of motion, taking into account the nonlinear nature of the structures.


Author(s):  
Javier Bonet ◽  
Antonio J. Gil

AbstractThis paper presents mathematical models of supersonic and intersonic crack propagation exhibiting Mach type of shock wave patterns that closely resemble the growing body of experimental and computational evidence reported in recent years. The models are developed in the form of weak discontinuous solutions of the equations of motion for isotropic linear elasticity in two dimensions. Instead of the classical second order elastodynamics equations in terms of the displacement field, equivalent first order equations in terms of the evolution of velocity and displacement gradient fields are used together with their associated jump conditions across solution discontinuities. The paper postulates supersonic and intersonic steady-state crack propagation solutions consisting of regions of constant deformation and velocity separated by pressure and shear shock waves converging at the crack tip and obtains the necessary requirements for their existence. It shows that such mathematical solutions exist for significant ranges of material properties both in plane stress and plane strain. Both mode I and mode II fracture configurations are considered. In line with the linear elasticity theory used, the solutions obtained satisfy exact energy conservation, which implies that strain energy in the unfractured material is converted in its entirety into kinetic energy as the crack propagates. This neglects dissipation phenomena both in the material and in the creation of the new crack surface. This leads to the conclusion that fast crack propagation beyond the classical limit of the Rayleigh wave speed is a phenomenon dominated by the transfer of strain energy into kinetic energy rather than by the transfer into surface energy, which is the basis of Griffiths theory.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi

The topology optimization method is extended for the optimization of geometrically nonlinear, time-dependent multibody dynamics systems undergoing nonlinear responses. In particular, this paper focuses on sensitivity analysis methods for topology optimization of general multibody dynamics systems, which include large displacements and rotations and dynamic loading. The generalized-α method is employed to solve the multibody dynamics system equations of motion. The developed time integration incorporated sensitivity analysis method is based on a linear approximation of two consecutive time steps, such that the generalized-α method is only applied once in the time integration of the equations of motion. This approach significantly reduces the computational costs associated with sensitivity analysis. To show the effectiveness of the developed procedures, topology optimization of a ground structure embedded in a planar multibody dynamics system under dynamic loading is presented.


Author(s):  
Hashem Ashrafiuon

Abstract This paper presents the effect of foundation flexibility on the optimum design of vibration absorbers. Flexibility of the base is incorporated into the absorber system equations of motion through an equivalent damping ratio and stiffness value in the direction of motion at the connection point. The optimum values of the uncoupled natural frequency and damping ratio of the absorber are determined over a range of excitation frequencies and the primary system damping ratio. The design parameters are computed and compared for the rigid, static, and dynamic models of the base as well as different levels of base flexibility.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


Author(s):  
W. J. Chen

Abstract Concise equations for rotor dynamics analysis are presented. Two coordinate ordering methods are introduced in the element equations of motion. One is in the real domain and the other is in the complex domain. The two proposed ordering algorithms lead to more compact element matrices. A station numbering technique is also proposed for the system equations during the assembly process. This numbering technique can minimize the matrix bandwidth, the memory storage and can increase the computational efficiency.


1998 ◽  
Vol 120 (1) ◽  
pp. 228-233 ◽  
Author(s):  
W. J. Chen

Concise equations for improvements in computational efficiency on dynamics of rotor systems are presented. Two coordinate ordering methods are introduced in the element equations of motion. One is in the real domain and the other is in the complex domain. The two coordinate ordering algorithms lead to compact element matrices. A station numbering technique is also proposed for the system equations during the assembly process. The proposed numbering technique can minimize the matrix bandwidth, the memory storage and can increase the computational efficiency. Numerical examples are presented to demonstrate the benefit of the proposed algorithms.


1998 ◽  
Vol 120 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Marco A. Arteaga

Control design of flexible robot manipulators can take advantage of the structural properties of the model used to describe the robot dynamics. Many of these properties are physical characteristics of mechanical systems whereas others arise from the method employed to model the flexible manipulator. In this paper, the modeling of flexible-link robot manipulators on the basis of the Lagrange’s equations of motion combined with the assumed modes method is briefly discussed. Several notable properties of the dynamic model are presented and their impact on control design is underlined.


Author(s):  
S. Homeniuk ◽  
S. Grebenyuk ◽  
D. Gristchak

The relevance. The aerospace domain requires studies of mathematical models of nonlinear dynamic structures with time-varying parameters. The aim of the work. To obtain an approximate analytical solution of nonlinear forced oscillations of the designed models with time-dependent parameters. The research methods. A hybrid approach based on perturbation methods, phase integrals, Galorkin orthogonalization criterion is used to obtain solutions. Results. Nonlocal investigation of nonlinear systems behavior is done using results of analytical and numerical methods and developed software. Despite the existence of sufficiently powerful numerical software systems, qualitative analysis of nonlinear systems with variable parameters requires improved mathematical models based on effective analytical, including approximate, solutions, which using numerical methods allow to provide a reliable analysis of the studied structures at the stage designing. An approximate solution in analytical form is obtained with constant coefficients that depend on the initial conditions. Conclusions. The approximate analytical results and direct numerical solutions of the basic equation were compared which showed a sufficient correlation of the obtained analytical solution. The proposed algorithm and program for visualization of a nonlinear dynamic process could be implemented in nonlinear dynamics problems of systems with time-dependent parameters.


Sign in / Sign up

Export Citation Format

Share Document