Determination of Residual Stresses Induced by Hardened Steel Turning Using Finite Element Methods

Author(s):  
Guang Yang ◽  
Caroline Norma Jane Tite ◽  
Graham Thomas Smith ◽  
Anthony David Hope ◽  
Siamak Noroozi

Abstract A method of using the finite element mode to predict the residual stresses on the surface of machined hardened steel is proposed. The proposed model is based on the analysis of strain relaxation data obtained from the measurement of residual stresses by material removal methods involving two stages; 1). experimental determination of the thermal residual stresses produced during heat treatment 2). experimental determination of the resultant residual stress on the machined surface due to the interaction between thermal stress relief and the machining stresses induced. The proposed finite element model was used to determine the relationship between the two types of residual stress within the machined surface region of a workpiece. It was found that the remaining residual stresses are determined mainly by stress release rather than induction. Such a finite element approach aims at an improvement in accuracy and reduction in the number of experiments required to determine the nature of residual stresses. Furthermore, it could provide an improved qualitative assessment of residual stresses when applied to hardened steel turning.

2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


2014 ◽  
Vol 657 ◽  
pp. 103-107 ◽  
Author(s):  
Gheorghe Brabie ◽  
Gheorghe Mustea ◽  
Bogdan Chirita

The cutting followed by burnishing, used like a combined process, leads to the improvement of the part surface quality (roughness, hardness, microstructure etc.) and to reduction of the costs and manufacturing times as a function of different working parameters. One of the factors and parameters that characterize the machined surface by this combined process is the residual stresses that are generated and located in the part deformed strata. The present paper analyses the results concerning the experimental determination of the residual stresses generated in the machined surfaces of parts made from magnesium alloy by the burnishing - turning combined process. The experimental investigations have shown that in the machined strata the combined process determines the occurrence of the compressive residual stresses and hence the fatigue and cracking resistances of the machined materials will be improved.


2016 ◽  
Vol 719 ◽  
pp. 23-27
Author(s):  
De Weng Tang ◽  
Zhi Feng He ◽  
Xi Jian Lv ◽  
Cong Peng

Residual stresses induced during the process of high speed cutting are very critical due to safety and corrosion resistance. Based on the nonlinear finite element code DEFORM, thermodynamic couple model of residual stress was built. Effect distribution of residual stresses on three different materials physical properties of hardness are analyzed by using the finite element model during the process of high speed cutting. The results show that metal material hardness is the key factors to residual stress. When materials’ hardness is higher, residual tensile stress is easy to form on the machined surface due to high cutting temperature, such as hardened steel SKD11(HRC=62). To lower hardness material, residual compressive stress is generated on the machined surface for plastic deformation, such as softer materials 7075Al (HRC=23).


1999 ◽  
Vol 122 (4) ◽  
pp. 632-641 ◽  
Author(s):  
T. I. El-Wardany ◽  
H. A. Kishawy ◽  
M. A. Elbestawi

The main objective of this paper is to investigate the quality and integrity of the surface produced during high speed hard machining (HSHM) of D2 tool steel in its hardened state (60–62 HRc). Polycrystalline Cubic Boron Nitride (PCBN) tools are used in this study. The results obtained from the micro-graphical analysis of the surface produced are presented in Part 1 of this paper. In Part 2 micro-hardness and residual stress analyses are presented. Microhardness measurements are conducted beneath the machined surface. X-ray diffraction analysis is performed to obtain the residual stress distribution beneath the surface. Analytically, a 3-D thermo-elasto-plastic finite element model is developed to predict the residual stresses induced in the workpiece surface. In the model the cutting zone is specified based on the tool condition (i.e., sharp or worn). The finite element analysis demonstrates the significant effect of the heat generated during cutting on the residual stress distribution. The results illustrate the possibility of minimizing the high tensile residual stresses produced in the workpiece surface, by selecting the appropriate depth of cut. A good correlation between the analytical and predicted residual stress is obtained. [S1087-1357(00)00804-2]


2013 ◽  
Vol 581 ◽  
pp. 501-504 ◽  
Author(s):  
Gergely Szabó ◽  
János Kundrák

In this paper the residual stresses are investigated emerging in the machined layer during hard turning in case of chip removal done by different tool rake angles. By means of finite element method simulation we examined what rake angle is best to complete cutting so that favourable residual stress values are gained in the machined surface layer.


Author(s):  
Mahenk Kumar Patanaik ◽  
Gaurav Tiwari ◽  
Akshay R Govande ◽  
B Ratna Sunil ◽  
Ravikumar Dumpala

Abstract In the present numerical study, the residual stresses generated during the shot peening process were evaluated using the finite element method. The influence of shot velocity on the residual stress distribution due to the indentation of a rigid shot over the target plate of alloy steel was studied. The finite element package ABAQUS 6.20 is used for simulating the shot peening process considering the target plate to be deformable. A parametric study was performed by introducing strain hardening rate as H1 = 800 MPa, keeping the dimension of target plate same with variation in shot velocity 20, 50, 75, 100, 125, and 150 m/s to check the behavior of residual stress distribution. As the indentation takes place over the metallic target plate, elastic-plastic deformation was observed. The indentation of the shot with a different velocity range causes the difference in the depth and size of the dent and induces the compressive residual stress. For perfectly plastic and the strain hardened material, the residual stress contour was simulated. The simulated results for strain hardened material show the significant change in the compressive residual stress in the sub-surface region of the target plate. It is evident from the results that the shot velocity has a significant effect on the residual stress distribution. The maximum compressive residual stress is achieved when the shot is indented at a velocity of 125 m/s.


1989 ◽  
Vol 166 ◽  
Author(s):  
H. J. Prask ◽  
C. S. Choi

ABSTRACTEnergy-dispersive neutron diffraction has been developed at the NIST reactor as a probe of sub- and near-surface residual stresses in technological samples. Application of the technique has been made to a variety of metallurgical specimens which includes the determination of tri-axial stresses as a function of depth in a number of uranium-3/4wt%Ti samples with different thermo-mechanical histories, and in two types of 7075-T6 aluminum “ogives”- of interest to the Army. Preliminary results have been obtained for an induction-hardened steel shaft, a fatigue lifetime test specimen for the SAE.


2008 ◽  
Vol 59 ◽  
pp. 299-303
Author(s):  
K. Mergia ◽  
Marco Grattarola ◽  
S. Messoloras ◽  
Carlo Gualco ◽  
Michael Hofmann

In plasma facing components (PFC) for nuclear fusion reactors tungsten or carbon based tiles need to be cooled through a heat sink. The joint between the PFC and the heat sink can be realized using a brazing process through the employment of compliant layer of either a low yield material, like copper, or a high yield material, like molybdenum. Experimental verification of the induced stresses during the brazing process is of vital importance. Strains and residual stresses have been measured in Mo/CuCrZr brazed tiles using neutron diffraction. The strains and stresses were measured in Mo tile along the weld direction and at different distances from it. The experimental results are compared with Finite Element Simulations.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


Sign in / Sign up

Export Citation Format

Share Document