Evaluation of Surface Vibrations in the Low and High Frequency Domain

Author(s):  
Peter Fischer ◽  
Helmut J. Pradlwarter ◽  
Gerhart I. Schuëller

Abstract The frequency domain of many problems in structural dynamics encompasses a wide range, covering nearly static behavior up to vibration flow characteristics similar to heat transfer. This work presents an uniform approach for low and high frequency vibration analysis, which is based on Finite Element modeling of the structure. Vibrations in the low frequency range are determined by an efficient superposition technique of complex modes, which accounts accurately for any linear damping effect. The modal method is extended to the high frequency domain by applying different levels of averaging to the response and eigenfrequencies and by the introduction of random properties of modeshapes. The high frequency domain is defined by the size of the Finite Elements, i.e. short wave lengths of high frequency modeshapes cannot be represented by the FE-model. The response computation of isolated structures is extended to substructures of complex systems by prescribing stochastic multi-support base excitation at the substructure boundaries. It may be noted, that the presented approach of stochastic high frequency dynamics contains, as special cases, the expressions of the structural response of Statistical Energy Analysis, Bolotin’s integral method and the results of Asymptotic Modal Analysis.

Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.


1999 ◽  
Vol 09 (12) ◽  
pp. 2295-2303 ◽  
Author(s):  
S. RIPOLL MASSANÉS ◽  
C. J. PÉREZ VICENTE

We have studied the stochastic behavior of Fitzhugh–Nagumo neuron-like model (FN) induced by subthreshold external stimuli. Our analysis based on three standard measures: the power spectrum, interspike interval distribution (ISI) and autocorrelation function shows that it is possible to define a characteristic time scale which can be identified in the response of the system for a wide range of frequencies. In contrast to previous studies we have focused our attention on high frequency signals which could be of interest for real systems such as nervous fibers in the auditory system. We report behaviors which resemble those of classical deterministic oscillators but never the stochastic resonance phenomenon typical of low frequency signals.


1996 ◽  
Vol 82 (3_suppl) ◽  
pp. 1371-1376 ◽  
Author(s):  
Kimihiko Yamagishi

Frequency estimation of social facts was compared between two methods of response elicitation. In the “narrow range” method, respondents answered questions like: “Out of 100 instances, how many instances belong to category X?”. In the “wide range” method, the same question was asked regarding “Out of 10,000.” A previous study in 1994 showed that judged frequencies were proportionally greater in the narrow condition than in the wide condition when subjects estimated the occurrence of low-frequency events. These results were interpreted to reflect cognitive processes of anchoring, wherein judged frequencies he close to small numbers within particular response ranges. The current work extends this argument to high-frequency events. In such cases, judgments about high-frequency events would be reached by similar cognitive processes operating toward the opposite direction. Hence, I predicted that judged frequencies for high-frequency events would be proportionally greater in the wide than in the narrow condition. Results were mostly consistent with these predictions. The relation to previous research is discussed.


1989 ◽  
Vol 111 (3) ◽  
pp. 185-191 ◽  
Author(s):  
C. D. Bertram ◽  
C. J. Raymond ◽  
K. S. A. Butcher

To determine whether self-excited oscillations in a Starling resistor are relevant to physiological situations, a collapsible tube conveying an aqueous flow was externally pressurized along only a central segment of its unsupported length. This was achieved by passing the tube through a shorter and wider collapsible sleeve which was mounted in Starling resistor fashion in a pressure chamber. The tube size and material, and all other experimental parameters, were as used in our previous Starling resistor studies. Both low- and high-frequency self-excited oscillations were observed, but the low-frequency oscillations were sensitive to the sleeve type and length relative to unsupported distance. Pressure-flow characteristics showed multiple oscillatory modes, which differed quantitatively from those observed in comparable Starling resistors. Slow variation of driving pressure gave differing behavior according to whether the pressure was rising or falling, in accord with the hysteresis noted on the characteristics and in the tube law. The results are discussed in terms of the various possible mechanisms of collapsible tube instability, and reasons are presented for the absence of the low-frequency mode under most physiological circumstances.


Author(s):  
Amin Khajehdezfuly

In this paper, a two-dimensional numerical model is developed to investigate the effect of rail pad stiffness on the wheel/rail force in a slab track with harmonic irregularity. The model consists of a vehicle, nonlinear Hertz spring, rail, rail pad, concrete slab, resilient layer, concrete base, and subgrade. The rail is simulated using the Timoshenko beam element for considering the effects of high-frequency excitation produced by short-wave irregularity. The results obtained from the model are compared with those available in the literature and from the field to prove the validity of the model. Through a parametric study, the effect of variations in rail pad stiffness, vehicle speed, and harmonic irregularity on the wheel/rail force is investigated. For the slab track without any irregularity, the wheel/rail force is at maximum when the vehicle speed reaches the critical speed. As the rail pad stiffness increases, the critical speed increases. When the amplitude of irregularity is high, wheel jumping phenomenon may occur. In this situation, as the vehicle speed and rail pad stiffness are increased, the dynamic wheel/rail force is increased. In the low-frequency range, the wheel/rail force increases as the rail pad stiffness increases. In the high-frequency range, the wheel/rail force increases as the rail pad stiffness is decreased.


Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1047-1058 ◽  
Author(s):  
Howard C Hughes ◽  
David M Aronchick ◽  
Michael D Nelson

It has previously been observed that low spatial frequencies (≤ 1.0 cycles deg−1) tend to dominate high spatial frequencies (≥ 5.0 cycles deg−1) in several types of visual-information-processing tasks. This earlier work employed reaction times as the primary performance measure and the present experiments address the possibility of low-frequency dominance by evaluating visually guided performance of a completely different response system: the control of slow-pursuit eye movements. Slow-pursuit gains (eye velocity/stimulus velocity) were obtained while observers attempted to track the motion of a sine-wave grating. The drifting gratings were presented on three types of background: a uniform background, a background consisting of a stationary grating, or a flickering background. Low-frequency dominance was evident over a wide range of velocities, in that a stationary high-frequency component produced little disruption in the pursuit of a drifting low spatial frequency, but a stationary low frequency interfered substantially with the tracking of a moving high spatial frequency. Pursuit was unaffected by temporal modulation of the background, suggesting that these effects are due to the spatial characteristics of the stationary grating. Similar asymmetries were observed with respect to the stability of fixation: active fixation was less stable in the presence of a drifting low frequency than in the presence of a drifting high frequency.


2012 ◽  
Vol 47 (4) ◽  
pp. 484-503 ◽  
Author(s):  
Norbert Schmitt ◽  
Diane Schmitt

The high-frequency vocabulary of English has traditionally been thought to consist of the 2,000 most frequent word families, and low-frequency vocabulary as that beyond the 10,000 frequency level. This paper argues that these boundaries should be reassessed on pedagogic grounds. Based on a number of perspectives (including frequency and acquisition studies, the amount of vocabulary necessary for English usage, the range of graded readers, and dictionary defining vocabulary), we argue that high-frequency English vocabulary should include the most frequent 3,000 word families. We also propose that the low-frequency vocabulary boundary should be lowered to the 9,000 level, on the basis that 8–9,000 word families are sufficient to provide the lexical resources necessary to be able to read a wide range of authentic texts (Nation 2006). We label the vocabulary between high-frequency (3,000) and low-frequency (9,000+) as mid-frequency vocabulary. We illustrate the necessity of mid-frequency vocabulary for proficient language use, and make some initial suggestions for research addressing the pedagogical challenge raised by mid-frequency vocabulary.


2019 ◽  
Vol 30 (1) ◽  
pp. 51-61
Author(s):  
Ibraheem AlQadi Ibraheem AlQadi

A numerical investigation of flow around a slender body at high angles of attack is presented. Large eddy simulation of the flow around an ogive-cylinder body at high angles of attack is carried out. Asymmetric vortex flow was observed at angles of attack of α = 55◦ and 65◦ . The results showed that the phenomenon is present in the absence of artificial geometrical or flow perturbation. Contrary to the accepted notion that flow asymmetry is due to a convective instability, the development of vortex asymmetry in the absence of perturbations indicates the existence of absolute instability. An investigation of the unsteady flow field was carried out using dynamic mode decomposition. The analysis identified two distinct unsteady modes; high-frequency mode and low-frequency mode. At angle of attack 45◦ the high-frequency mode is dominant in the frontal part of the body and the low-frequency mode is dominant at the rear part. At α = 55◦ , the highfrequency mode is dominant downstream of vortex breakdown. At α = 65◦ , the spectrum shows a wide range of modes. Reconstruction of the dynamical modes shows that the low-frequency mode is associated with the unsteady wake and the high-frequency mode is associated with unsteady shear layer.


Sign in / Sign up

Export Citation Format

Share Document