Stability Analysis of a Load Sensing Hydraulic Transmission System Modeling and Simulaton Approach

Author(s):  
Rana Saha ◽  
Niloy Khutia ◽  
Rathindranath Maiti

Abstract An energy saving hydraulic system, known as load-sensing hydraulic system, to improve the efficiency of transmitting power from the pump to load has been studied in the present work. Due to the addition of the load sensing mechanism stability characteristics deteriorate in this system. A nonlinear mathematical model followed by a simulation model using SIMULINK has been developed to study the effect of system parameters on stability. Simulation results are verified with existing theoretical and experimental results.

Author(s):  
S D Kim ◽  
H S Cho ◽  
C O Lee

The load-sensing hydraulic system is an energy saving hydraulic system which improves the efficiency of transmitting power from the pump to the load. However, its stability characteristics deteriorate critically due to the addition of the load-sensing mechanism, compared with those of the conventional system. In this paper, a non-linear mathematical model of the load-sensing hydraulic system is formulated, taking into consideration the dynamics of the load-sensing pump. Based upon linearization of this model for various operating conditions, the stability analysis has been made using the Routh-Hurwitz stability criterion. The results of the theoretical stability analysis were assured through experiments. Both results show that stability is critical to the choice of system parameters such as the setting pressure of the pump compensator and the load inertia.


2013 ◽  
Vol 328 ◽  
pp. 457-462
Author(s):  
Ling Yun Yan ◽  
Peng Fei Wu ◽  
Zeng Xian Bao

The paper introduces the structure and operating principle of two-position three-way pure water high-speed solenoid on-off valve, establishes the mathematical model of on-off valve, obtains performance parameters of electromagnet through Ansoft simulation, imports the performance parameters of electromagnet into the solenoid on-off valve simulation model in AMESim, and realizes the coupling simulation among electromagnetic circuit, mechanical part and hydraulic system, so as to improve simulation precision and achieve relatively correct static-dynamic simulation results of high-speed solenoid on-off valve.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamad N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu A. Muhammad

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more accurate the model the better the response is when dealing with the real plant. This paper presents a model predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by system identification using a grey box technique. Simulation results show superior performance of the gains computed using the grey box model as compared to common linearized mathematical model. 


2015 ◽  
Vol 789-790 ◽  
pp. 842-848
Author(s):  
Li Feng Yi ◽  
Kai Ru Zhang ◽  
Jun Liu

Considered the theoretical foundation of fractional order, the fractional mathematical model of the Buck-Boost converter in continuous conduction mode operation is built and analyzed in theory. Based on the improved Oustaloup fractional calculus for filter algorithm, the simulation model is framed by using the Matlab/Simulink software. And the simulation results are compared with that of integer order. It proves the correctness of the fractional order mathematical model and the theoretical analysis.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


2021 ◽  
Author(s):  
Joerg Edler ◽  
Samo Goljat

Modelling accurate response from hydraulic system in practice is difficult, especially establishing right mathematical model and getting all the parameters for certain hydraulic component. In this paper we mentioned two different different approaches for modelling hydraulic components, specifically Moog G761-series, made by company Moog. Approaches mentioned in this paper are using classical Matlab Simulink environment to show example of the first order model. Main focus is on using Matlab Simulink Simscape, which already includes some of the basic hydraulic components. We discussed problems and challenges when obtaining and simulating real components. We developed our own Simulink Simscape model for simulating Moog G761 servovalve. Simulation results were compared with the datasheet values from Catalog.


2012 ◽  
Vol 229-231 ◽  
pp. 1684-1687
Author(s):  
Jun Zhu ◽  
Feng Yuan ◽  
Hong Xia Wu

The working principle and process of the hydraulic support column system is introduced at first. The simulation model of the column system is established in the software of AMESim, and the parameters of the model are set according to the actual working conditions. The simulation curves of each working procedure are obtained, and the simulation results are analyzed. The conclusions will be essential references for the research on the entire support hydraulic system.


SIMULATION ◽  
2019 ◽  
Vol 96 (4) ◽  
pp. 387-402 ◽  
Author(s):  
Jianping Shang ◽  
Wenyuan Wang ◽  
Yun Peng ◽  
Qi Tian ◽  
Ying Tang ◽  
...  

The study of waterway through capacity for ports is a challenging problem due to the randomness and complexity of the waterway system, which needs to be analyzed by simulation technology. This paper quantitatively studies the influence of special ships on waterway through capacity and provides corresponding measures to improve waterway through capacity. The complex waterway system in the Port of Meizhou Bay is employed as a case study. Considering the actual conditions in the Port of Meizhou Bay, including the ships, berths, waterways, and natural conditions, a Simio-based simulation model is established. The real operation data from the Port of Meizhou Bay in 2015 are used to verify the correctness and effectiveness of the model. The simulation results show that special ships reduce the waterway through capacity by 4.9% and suggest that circumnavigation strategies that can be adopted after the extension and new construction of waterway systems can improve the waterway through capacity by 5.9%.


2011 ◽  
Vol 383-390 ◽  
pp. 2121-2125
Author(s):  
Ren Li ◽  
Wen Xiao Zhang ◽  
Hua Yan Li

Aiming at the complexity of mechanical devices and the polytrope of operating conditions for marine propulsion plant, the modeling and simulation of propeller and dull system are investigated based on MATLAB/Simulink. The simulation model of propeller and dull system is constructed in which the Chebyshev fit expression across four quadrants is given for the propeller. So it becomes practical to express static and dynamic properties of propeller and dull system. A luxury cruises fitted on two engines and two fixed pitch propellers is considered to perform simulation tests. The actual navigation conditions of marine propulsion plant, including starting, parking and reversing etc, are taken into account. The simulation results analysis illustrates the correctness and validity of modeling and simulation for propeller and dull system. Thus provides a new method for the optimization and design of marine propulsion plant.


2014 ◽  
Vol 611 ◽  
pp. 175-182 ◽  
Author(s):  
Ľubica Miková ◽  
Michal Kelemen ◽  
Ivan Virgala ◽  
Maroš Michna

The subject of creation of simulation and mathematical models is nowadays more and more current and its application is in almost every aspect of life. The article deals with compiling a mathematical model of a pivoting arm using Lagrange equations of the second kind. Subsequently, the model will be created in the simulation program Matlab/Simulink. The simulation model will as well be assembled in the program Adams. The results of these simulations will be compared in the conclusion. This article presents a procedure for resolving a mechanical system from the beginning, from creation of a mathematical model through creation of a simulation model up to evaluation of the simulation results. This paper presents a procedure for resolving mechanical system from the beginning. Thus, it is done by creating a mathematical model through the creation of a simulation model to evaluate the results of the simulation. According to these simulations will produce a working model of the manipulator, which could be used for teaching purposes.


Sign in / Sign up

Export Citation Format

Share Document