Some Implications for Parallel Kinematic Machine Design Based on Kinetostatic Model

Author(s):  
Clément M. Gosselin ◽  
Dan Zhang

Abstract In this paper, a new method — named lumped kinetostatic modeling — to analyze the effect of the link flexibility on the mechanism’s stiffness is provided. A new type of mechanism whose degree of freedom (dof) is dependent on a passive constraining leg connecting the base and the platform is introduced and analyzed. With the proposed kinetostatic model, a significant effect of the link flexibility on the mechanism’s precision has been demonstrated. The influence of the changement of structure parameters, including material properties, on the system behavior is discussed. In the paper, the geometric model of this kind of mechanism is first introduced. Then, a lumped kinetostatic model is proposed in order to account for joint and link compliances; some results and design guidelines are obtained. Finally, the optimization of the precision is addressed using a genetic algorithm.

Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Dan Zhang ◽  
Clément M. Gosselin

In this paper, a new method – named lumped kinetostatic modeling – to analyze the effect of the link flexibility on the mechanism's stiffness is provided. A new type of mechanism whose degree of freedom (dof) is dependent on a passive constraining leg connecting the base and the platform is introduced and analyzed. With the proposed kinetostatic model, a significant effect of the link flexibility on the mechanism's precision has been demonstrated. The influence of the change in structure parameters, including material properties, on the system behavior is discussed. In the paper, the geometric model of this kind of mechanism is first introduced. Then, a lumped kinetostatic model is proposed in order to account for joint and link compliances; some results and design guidelines are obtained. Finally, the optimization of the precision is addressed using a genetic algorithm.


2002 ◽  
Vol 124 (3) ◽  
pp. 725-733 ◽  
Author(s):  
Dan Zhang ◽  
Cle´ment M. Gosselin

Selecting a mechanism for a machine tool that will best suit the needs of a forecast set of rigidities can be a difficult and costly exercise. This problem can now be addressed using a kinetostatic modeling method. In this paper, a kinetostatic model for the Tricept machine tool family is established based on lumped flexibilities. This model can be used to analyze the effect of link flexibility on the machine tool’s global stiffness and the platform positioning precision. The Tricept machine tool is a new type of parallel mechanism with prismatic actuators whose degree of freedom is dependent on a passive constraining leg connecting the base and the platform. The geometric model and the mechanical design of the Tricept machine tool is first recalled. Then, a lumped kinetostatic model is proposed in order to account for joint and link compliances. It is shown that the link flexibility has a significant effect on the machine tool’s precision and that it is necessary to take the link flexibility into account. Additionally, the inverse kinematics and velocity equations are given for both rigid-link and flexible-link mechanisms. Finally, the optimization of the stiffness is addressed using a genetic algorithm.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772413
Author(s):  
Teng-fei Tang ◽  
Jun Zhang

This article proposes two types of lockable spherical joints which can perform three different motion patters by locking or unlocking corresponding rotational axes. Based on the proposed lockable spherical joints, a general reconfigurable limb structure with two passive joints is designed with which the conceptual designs of two types of Exechon-like parallel kinematic machines are completed. To evaluate the stiffness of the proposed Exechon-like parallel kinematic machines, an expanded kinetostatic model is established by including the compliances of all joints and limb structures. The prediction accuracy of the expanded stiffness model is validated by numerical simulations. The comparative stiffness analyses prove that the Exe-Variant parallel kinematic machine claims competitive rigidity performance to the Exechon parallel kinematic machine. The present work can provide useful information for further investigations on structural enhancement, rigidity improvement, and dynamic analyses of other Exechon-like parallel kinematic machines.


Author(s):  
Dan Zhang ◽  
Lihui Wang

This paper proposes a spatial three degrees of freedom parallel kinematic machine enhanced by a passive leg and a web-based remote control system. First, the geometric model of the three degrees of freedom parallel kinematic machine is addressed; in the mechanism, a fourth kinematic link — a passive link connecting the base center to the moving platform center — is introduced. This last link is used to constrain the motion of the tool (located in the moving platform) to only three degrees of freedom, as well as to enhance the global stiffness of the structure and distribute the torque from machining. With the kinematic model, a web-based remote control approach is then applied. The concept of the web-based remote manipulation approach is introduced and the principles behind the method are explored in detail. Finally, an example of remote manipulation is demonstrated to the proposed 3-DOF structure using web-based remote control concept before conclusions.


Author(s):  
Dan Zhang ◽  
Lihui Wang ◽  
Sherman Y. T. Lang

Selecting a configuration for a machine tool that will best suit the needs of a forecast set of requirements can be a difficulty and costly exercise. This problem can now be addressed using an integrated virtual validation system. The system includes kinematic/dynamic analysis, kinetostatic model, CAD module, FEM module, CAM module, optimization module and visual environment for simulation and collision detection of the machining and deburring. It is an integration of the parallel kinematic machines (PKM) design, analysis, optimization and simulation. In this paper, the integrated virtual system is described in a detail, a prototype of a 3-dof PKM is modeled, analyzed, optimized and remote controlled with the proposed system. Some results and simulations are also given. Its effectiveness is shown with the results obtained by NRC-IMTI during the design of the 3-dof NRC PKM.


Author(s):  
Gloria J. Wiens ◽  
David S. Hardage

One of the primary concerns associated with the machining process involves excess vibrations that can adversely affect the ability of the machine tool to accurately produce parts. This paper presents the development of a method by which the vibrational characteristics of machine tools exhibiting a parallel kinematic machine architecture may be modeled. Theoretical and experimental results are compared to demonstrate the validity of the modeling approach. The resulting model provides an effective means to guide the machine design process for the purposes of enhancing performance and improving control.


1999 ◽  
Author(s):  
David S. Hardage ◽  
Gloria J. Wiens

Abstract This paper presents the results of a mini-modal survey on the Hexel Tornado 2000, a parallel kinematic machine tool located at Sandia National Laboratories, and discusses the finite element model that is used to simulate the structural dynamics of this machine. Preliminary data suggests a dependency of resonant frequency and stiffness characteristics on machine configuration.


Sign in / Sign up

Export Citation Format

Share Document