Module Interface Representation

Author(s):  
Bernhard Bettig ◽  
John K. Gershenson

Modular design issues are receiving increased attention by companies interested in reducing costs from carrying large numbers of components while at the same time increasing product quality and providing customers with greater product variety. Existing research has mainly focused on optimizing product platforms and product offerings, with little attention being given to the interfaces between modules. This research presents an investigation into how module interfaces are best represented in a CAD/PDM environment. The representation decisions are identified and advantages and limitations for each option are presented. Representation decisions revolve around issues such as the use of higher abstraction models, the use of ports, and referencing interface components in interface definitions. We conclude that higher abstraction models are necessary, ports should be represented explicitly, and interface hardware should not be included directly with interfaces. The research considers a large number of components from representative products offered by a home appliance manufacturer.

Author(s):  
John-Travis Hansen ◽  
David Rosen

Product platforms allow companies to compete in the global marketplace by facilitating product variety, by adding, removing, or substituting components and features across a product family, while reducing costs and lead times. In many cases, developing a common platform involves determining which components are in a product family, their connections, and their spatial layouts. The development of product configurations and layouts is a complex problem and involves both discrete and continuous mathematical processes. This paper presents algorithms and an implementation to address the problem of configuring products and component layouts. The algorithms will describe the processes used to generate the product configurations based on constraints on combinations and the layout of components within the products. The implementation presents software developed to present the algorithms for the configuration and layout processes.


Author(s):  
John-Travis Hansen ◽  
David W. Rosen

Product platforms allow companies to compete in the global marketplace by facilitating product variety and by adding, removing, or substituting components and features across a product family, while reducing costs and lead times. In many cases, developing a common platform involves determining which components are in a product family, their connections, and their spatial layouts. The development of product configurations and layouts is a complex problem and involves both discrete and continuous mathematical processes. This paper presents algorithms and an implementation to address the problem of configuring products and component layouts. The algorithms will describe the processes used to generate the product configurations based on constraints on combinations and the layout of components within the products. The implementation presents software developed to present the algorithms for the configuration and layout processes.


Author(s):  
Carolyn G. Conner ◽  
Joseph P. De Kroon ◽  
Farrokh Mistree

Abstract In this paper we present the Product Variety Tradeoff Evaluation Method for assessment of alternative product platforms in product family design. The Product Variety Tradeoff Evaluation Method is an attention-directing tool for evaluating tradeoffs between commonality and individual product performance for product platform alternatives with differing levels of commonality. We apply the Product Variety Tradeoff Evaluation Method to a case study in transmission redesign for a family of cordless drills. The emphasis in this paper is placed on the method rather than on the results, per se.


Author(s):  
Zahed Siddique ◽  
David W. Rosen ◽  
Nanxin Wang

Abstract The issue of moving from a mass production operating mode to mass customization, or even limited customization, has many companies struggling to reorganize their product architectures. Enabling the production of several related products for different market segments, from a common base, is the focus of the product variety design research area. In this paper, the applicability of product variety design concepts to the design of automotive platforms is explored. Many automotive companies are reducing the number of platforms they utilize across their entire range of cars and trucks in an attempt to reduce development times and costs. To what extent can research on product variety design apply to the problem of platform commonization? This question is explored by comparing product variety design concepts (standardization, modularity, mutability, etc.) to platform structures and requirements. After assessing the applicability of these concepts, a platform representation and methods for measuring platform commonality are proposed that incorporate key characteristics of these concepts. An application to two platforms is included. Although preliminary, this work has led to insight as to why automotive platform commonization is difficult and how product design variety research can potentially aid commonization. The findings are potentially applicable to product platforms in general.


Author(s):  
Paul Giguere ◽  
Scott W. Formica ◽  
Wayne M. Harding ◽  
Michele R. Cummins

Designing online trainings or courses for large numbers of participants can prove to be challenging for instructors and facilitators. Online learning environments need to be structured in a way that preserves actual or perceived levels of interaction, participant perceptions of value and utility, and achievement of the learning objectives. This chapter describes five Large-Scale Interaction Strategies that offer guidance for addressing some of these online instructional design issues. Evaluation data are presented in support of two of the strategies, and recommendations are provided about how future research in this area might be conducted.


Author(s):  
Ronald S. Farrell ◽  
Gary Stump ◽  
Jaeil Park ◽  
Timothy W. Simpson

For companies who must provide customized products on demand, it is important that the voice of the customer be addressed and incorporated early into the design process. Web-based design interfaces have emerged as useful tools to make customer voices interactive and provide a customer-friendly and cost-effective interface. The effectiveness of the interface can be greatly enhanced through implementation of a strategic customization process that can proactively react to customer requests. The design process represents a virtual product line that approaches the goal of providing infinite variety at minimal costs. The process provides a base for a true customization approach, which is different from the typical mass customization approach to provide ample but limited product variety a priori for a targeted market. In this paper, we describe the development of a prototypical custom product specification system and the underlying strategic design process that is based on a collection of product platforms. The development is illustrated using an example from on-going research with a company that produces customized valves for the power industry.


Author(s):  
Jessica L. Mulberger ◽  
Timothy W. Simpson

Today’s market is becoming increasingly more competitive as companies strive to achieve success by reaching a large number of customers in a mass market while simultaneously treating them as individuals in a customized market. Many companies have begun to appreciate the benefits of using product platforms as they increase the customizability of their offered products, while reducing development costs and time to market. However, product variety is not customization; it is simply an attempt on the part of a company to meet the individual needs of their customers by flooding the market with many variations of the same product. With recent innovations in the field of information technology, web-based product development methodologies provide the capability for advanced customer involvement during the design process, which is a crucial aspect of differentiating customization from variety. Current approaches have provided web-based frameworks where users are offered a limited amount of control in the design process by assembling different configurations of given modules or by choosing a product already available in the company database. The focus in this paper is on advancements to a web-based framework where design parameters are collected from the user by means of a web-based browser interface, optimization is completed using the specified parameters, and a 3D visual representation is dynamically provided based on the results from the optimization. This proposed framework is illustrated using an example from ongoing research involving General Aviation Aircraft design.


2020 ◽  
Vol 1 ◽  
pp. 2245-2254
Author(s):  
I. Alonso Fernández ◽  
M. Panarotto ◽  
O. Isaksson

AbstractPlatform design has been firmly established in the automotive industry as a strategy to provide wider product variety while maintaining cost effective production. But this strategy can struggle to keep up with the pace and nature of emerging technologies. This paper reviews the existing approaches to modelling product platforms, and showcases the challenges at OEMs introducing new technological innovations in their platforms. A gap is identified in the methods to assess the ability of existing platforms to integrate new technologies whenever they become available.


Sign in / Sign up

Export Citation Format

Share Document