A Prototype Web-Based Custom Product Specification System

Author(s):  
Ronald S. Farrell ◽  
Gary Stump ◽  
Jaeil Park ◽  
Timothy W. Simpson

For companies who must provide customized products on demand, it is important that the voice of the customer be addressed and incorporated early into the design process. Web-based design interfaces have emerged as useful tools to make customer voices interactive and provide a customer-friendly and cost-effective interface. The effectiveness of the interface can be greatly enhanced through implementation of a strategic customization process that can proactively react to customer requests. The design process represents a virtual product line that approaches the goal of providing infinite variety at minimal costs. The process provides a base for a true customization approach, which is different from the typical mass customization approach to provide ample but limited product variety a priori for a targeted market. In this paper, we describe the development of a prototypical custom product specification system and the underlying strategic design process that is based on a collection of product platforms. The development is illustrated using an example from on-going research with a company that produces customized valves for the power industry.

Author(s):  
Jessica L. Mulberger ◽  
Timothy W. Simpson

Today’s market is becoming increasingly more competitive as companies strive to achieve success by reaching a large number of customers in a mass market while simultaneously treating them as individuals in a customized market. Many companies have begun to appreciate the benefits of using product platforms as they increase the customizability of their offered products, while reducing development costs and time to market. However, product variety is not customization; it is simply an attempt on the part of a company to meet the individual needs of their customers by flooding the market with many variations of the same product. With recent innovations in the field of information technology, web-based product development methodologies provide the capability for advanced customer involvement during the design process, which is a crucial aspect of differentiating customization from variety. Current approaches have provided web-based frameworks where users are offered a limited amount of control in the design process by assembling different configurations of given modules or by choosing a product already available in the company database. The focus in this paper is on advancements to a web-based framework where design parameters are collected from the user by means of a web-based browser interface, optimization is completed using the specified parameters, and a 3D visual representation is dynamically provided based on the results from the optimization. This proposed framework is illustrated using an example from ongoing research involving General Aviation Aircraft design.


2020 ◽  
Vol 1 ◽  
pp. 2245-2254
Author(s):  
I. Alonso Fernández ◽  
M. Panarotto ◽  
O. Isaksson

AbstractPlatform design has been firmly established in the automotive industry as a strategy to provide wider product variety while maintaining cost effective production. But this strategy can struggle to keep up with the pace and nature of emerging technologies. This paper reviews the existing approaches to modelling product platforms, and showcases the challenges at OEMs introducing new technological innovations in their platforms. A gap is identified in the methods to assess the ability of existing platforms to integrate new technologies whenever they become available.


Author(s):  
Ronald S. Farrell ◽  
Timothy W. Simpson

Previously, we introduced a new method for improving commonality in a highly customized, low volume product line using component product platforms. The method provides a bottom-up platform approach to redesign family members originally developed one-at-a-time to meet specific customer requirements. In this paper, we extend the method with an Activity-Based Costing (ABC) model to specifically capture the manufacturing costs in the product line, including the cost associated with implementing a platform strategy. The valve yoke example is revisited in this paper, the customized ABC model is defined, two design strategy alternatives are addressed, and the new method is used to determine which alternative is better at resolving the tradeoff between commonality, total cost, and product performance. The proposed method shows promise for creating a product platform portfolio from a set of candidate component platforms that is most cost-effective within an existing product line. The proposed method allows for arbitrary leveraging as it does not rely solely on the traditional vertical, horizontal, or beachhead strategies advocated for the market segmentation grid, and this is especially beneficial when applied to an existing product line that was develop one-at-a-time time such that artifact designs are inconsistent from one to another.


2003 ◽  
Vol 3 (2) ◽  
pp. 119-129 ◽  
Author(s):  
Timothy W. Simpson ◽  
Karthikeyan Umapathy ◽  
Jyotirmaya Nanda ◽  
Sachin Halbe ◽  
Barry Hodge

Product customization is a value-added activity that can significantly increase sales by increasing customer satisfaction. Many companies are using product platforms to increase product variety and customization while reducing development costs and time-to-market. While flooding the market with a variety of products may satisfy some customers by providing a substitute for customization, variety is not customization. This subtle, yet important, distinction between variety and customization motivates the need for investigating technologies to facilitate customer involvement during the product realization process, and our focus in this paper is on web-based platform customization strategies enabled by recent advances in information technology. Towards that end, we describe the development of an interactive web-based platform customization framework as an extension of product family design and present a prototype that has been created as part of on-going research with a company that produces customized refiner plates for pulp and paper processing. While the utility of the proposed web-based framework is demonstrated in the context of customizing a refiner plate design, the proposed framework is applicable to a variety of engineered products and enhances customer interaction during the product realization process while reducing design and manufacturing lead-time for custom orders.


2020 ◽  
Vol 28 (1) ◽  
pp. 181-195
Author(s):  
Quentin Vanhaelen

: Computational approaches have been proven to be complementary tools of interest in identifying potential candidates for drug repurposing. However, although the methods developed so far offer interesting opportunities and could contribute to solving issues faced by the pharmaceutical sector, they also come with their constraints. Indeed, specific challenges ranging from data access, standardization and integration to the implementation of reliable and coherent validation methods must be addressed to allow systematic use at a larger scale. In this mini-review, we cover computational tools recently developed for addressing some of these challenges. This includes specific databases providing accessibility to a large set of curated data with standardized annotations, web-based tools integrating flexible user interfaces to perform fast computational repurposing experiments and standardized datasets specifically annotated and balanced for validating new computational drug repurposing methods. Interestingly, these new databases combined with the increasing number of information about the outcomes of drug repurposing studies can be used to perform a meta-analysis to identify key properties associated with successful drug repurposing cases. This information could further be used to design estimation methods to compute a priori assessment of the repurposing possibilities.


2020 ◽  
Vol 36 (16) ◽  
pp. 4527-4529
Author(s):  
Ales Saska ◽  
David Tichy ◽  
Robert Moore ◽  
Achilles Rasquinha ◽  
Caner Akdas ◽  
...  

Abstract Summary Visualizing a network provides a concise and practical understanding of the information it represents. Open-source web-based libraries help accelerate the creation of biologically based networks and their use. ccNetViz is an open-source, high speed and lightweight JavaScript library for visualization of large and complex networks. It implements customization and analytical features for easy network interpretation. These features include edge and node animations, which illustrate the flow of information through a network as well as node statistics. Properties can be defined a priori or dynamically imported from models and simulations. ccNetViz is thus a network visualization library particularly suited for systems biology. Availability and implementation The ccNetViz library, demos and documentation are freely available at http://helikarlab.github.io/ccNetViz/. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Rasmus Rydbirk ◽  
Jonas Folke ◽  
Kristian Winge ◽  
Susana Aznar ◽  
Bente Pakkenberg ◽  
...  

Abstract Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.


Author(s):  
Carolyn G. Conner ◽  
Joseph P. De Kroon ◽  
Farrokh Mistree

Abstract In this paper we present the Product Variety Tradeoff Evaluation Method for assessment of alternative product platforms in product family design. The Product Variety Tradeoff Evaluation Method is an attention-directing tool for evaluating tradeoffs between commonality and individual product performance for product platform alternatives with differing levels of commonality. We apply the Product Variety Tradeoff Evaluation Method to a case study in transmission redesign for a family of cordless drills. The emphasis in this paper is placed on the method rather than on the results, per se.


Author(s):  
Kosuke Ishii ◽  
Cheryl Juengel ◽  
C. Fritz Eubanks

Abstract This study develops a method to capture the broadest customer preference in a product line while minimizing the life-cycle cost of providing variety. The paper begins with an overview of product variety and its importance in overhead costs: supply chain, equipment and tooling, service, and recycling. After defining the product structure graph as a representation of variety, the paper introduces an approximate measure for the customer importance and life-cycle cost of product variety The cost measure utilizes the concept of late point identification which urges standardization early in the manufacturing process and differentiation at the end of the process. The variety importance-cost map allows engineers to identify cost drivers in the design of the product or the manufacturing system and seek improvements. The refrigerator door example illustrates the concept. On-going work seeks to validate and enhance the method with several companies from different industries.


Author(s):  
Zahed Siddique ◽  
David W. Rosen ◽  
Nanxin Wang

Abstract The issue of moving from a mass production operating mode to mass customization, or even limited customization, has many companies struggling to reorganize their product architectures. Enabling the production of several related products for different market segments, from a common base, is the focus of the product variety design research area. In this paper, the applicability of product variety design concepts to the design of automotive platforms is explored. Many automotive companies are reducing the number of platforms they utilize across their entire range of cars and trucks in an attempt to reduce development times and costs. To what extent can research on product variety design apply to the problem of platform commonization? This question is explored by comparing product variety design concepts (standardization, modularity, mutability, etc.) to platform structures and requirements. After assessing the applicability of these concepts, a platform representation and methods for measuring platform commonality are proposed that incorporate key characteristics of these concepts. An application to two platforms is included. Although preliminary, this work has led to insight as to why automotive platform commonization is difficult and how product design variety research can potentially aid commonization. The findings are potentially applicable to product platforms in general.


Sign in / Sign up

Export Citation Format

Share Document