Kinematics, Dynamics and Control of a Planar 3-DOF Tensegrity Robot Manipulator

Author(s):  
Rafael E. Vasquez ◽  
Julio C. Correa

In this paper the kinematic and the dynamic analysis, and a nonlinear control strategy for a planar three-degree-of-freedom tensegrity robot manipulator are addressed. A geometric method is used to obtain the set of equations that describe the position analysis. Initially, solutions to the problems concerning forward and reverse kinematic analysis are presented; then, the forward velocity coefficients matrix is obtained analytically. The Lagrangian approach is used to deduce the dynamic equation of motion and its main properties are described using the nonlinear control system theory. Finally, a feedback-linearization-based nonlinear control scheme is applied to the mechanism to follow a prescribed path in the Cartesian coordinate system. The obtained results show that lightweight mechanisms which incorporate tensegrity systems could be used in a positioning problem.

2011 ◽  
Vol 403-408 ◽  
pp. 4743-4752
Author(s):  
R. Ray ◽  
Nandy ◽  
S. N. Shome ◽  
S. Bhaumik

The paper describes the dynamics and control aspects of an arm wheel based mobile robot for stair navigation with such features as skid steered motion on flat surface, navigation on staircase i.e. ascending and descending stairs keeping payload carrier platform parallel to the ground. A feedback linearization control scheme is adopted to decipher the skid steer phenomena. The nearness of the experimental data to corresponding simulated data validates design and analysis of the present system.


Author(s):  
Sadeq Yaqubi ◽  
Morteza Dardel ◽  
Hamidreza Mohammadi Daniali

Dynamical behaviors and control of planar crank–slider mechanism considering the effects of joint clearance and link flexibility are studied. A control scheme for maintaining continuous contact is proposed. It was observed that using one actuator for control scheme might cause the actuator to reach its saturation limit, a problem that was bypassed by installing an additional actuator on connecting rod. In one actuator case, only continuous contact can be obtained, while with the aid of two actuators, point contact can be achieved. Great improvements in the performance of mechanism and reduction of vibrations are observed in the case of using an additional actuator.


2006 ◽  
Vol 3 (1) ◽  
pp. 43-48 ◽  
Author(s):  
P. Goldsmith ◽  
S. Wynd ◽  
G. Kawchuk

The precision and programmability of robotic manipulators makes them suitable for biomechanics research, particularly when an experimental procedure must be accurately repeated multiple times. This paper describes a robotic system used to investigate biomechanical mechanisms of stroke in humans. A parallel robot manipulator is used to reproduce chiropractic manipulations on animal subjects using a 3-D vision system. An algorithm for calibrating the system is proposed and tested on the robot. An iterative learning control scheme is then introduced to improve positional accuracy. Experimental results demonstrate that the calibration procedure and learning scheme are both effective.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mohan Santhakumar

This study addresses the detailed modeling and simulation of the dynamic coupling between an underwater vehicle and manipulator system. The dynamic coupling effects due to damping, restoring, and inertial effects of an underwater manipulator mounted on an autonomous underwater vehicle (AUV) are analyzed by considering the actuator and sensor characteristics. A model reference control (MRC) scheme is proposed for the underwater vehicle-manipulator system (UVMS). The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative (PID) control. The robustness of the proposed control scheme is also illustrated in the presence of external disturbances and parameter uncertainties.


2013 ◽  
Vol 464 ◽  
pp. 279-284 ◽  
Author(s):  
Aydın Özbey ◽  
Erol Uzal ◽  
Hüseyin Yildiz

Stabilization at the top vertical position of an inverted pendulum on a cart, while bringing the cart to a desired position, by applying a force to the cart is considered. This is an underactuated mechanical system for which the main nonlinear control scheme, feedback linearization, fails. A single control law producing the force on the cart using cart velocity, and position and velocity of the pendulum is developed and shown, by numerical experiments, to asymptotically stabilize the pendulum at the top position while bringing the cart to its origin, although no attemp is made for a proof of global stability.


Author(s):  
S. M. Mehdi Ansarey M. ◽  
M. J. Mahjoob

In this paper, the dynamics and control of an automated guided vehicle (AGV) is described. The objective is to control the vehicle direction and location with respect to a prescribed trajectory. This is accomplished based on an optimum control strategy using vehicle state variables. A four-wheel vehicle with three degrees of freedom including longitudinal, lateral and yaw motion is considered. The nonlinearity of the tire and steering mechanism is also included. The control system design for circular, straight forward and composite path is presented based on feedback linearization. Some trajectory simulation for discrete curvatures is carried out. The controller was implemented within MATLAB environment. The design was also evaluated using ADAMS full vehicle assembly. The results demonstrated the accuracy of the model and the effectiveness of the developed control system.


Author(s):  
María del Carmen Rodríguez-Liñán ◽  
Marco Mendoza ◽  
Isela Bonilla ◽  
César A. Chávez-Olivares

AbstractA saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces.The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.


2005 ◽  
Vol 127 (6) ◽  
pp. 1152-1160 ◽  
Author(s):  
Marc Arsenault ◽  
Clément M. Gosselin

The use of tensegrity systems as structures has been extensively studied. However, their development for use as mechanisms is quite recent even though they present such advantages as reduced mass and a deployment capability. The object of this paper is to apply analysis methods usually reserved for conventional mechanisms to a planar one-degree-of-freedom tensegrity mechanism. This mechanism is obtained from a three-degree-of-freedom tensegrity system by adding actuation to the latter as well as by making some assumptions of symmetry. Analytical solutions are thus developed for the mechanism’s direct and inverse static problems. Furthermore, the working curve, singularities, and stiffness of the mechanism are detailed. Finally, a dynamic model of the mechanism is developed and a preliminary control scheme is proposed.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
S. M. Mizanoor Rahman ◽  
Ryojun Ikeura

Power assist systems are usually used for rehabilitation, healthcare, and so forth.This paper puts emphasis on the use of power assist systems for object transfer and thus brings a novelty in the power-assist applications. However, the interactions between the systems and the human users are usually not satisfactory because human features are not included in the control design. In this paper, we present the development of a 1-DOF power assist system for horizontal transfer of objects. We included human features such as weight perception in the system dynamics and control. We then simulated the system using MATLAB/Simulink for transferring objects with it and (i) determined the optimum maneuverability conditions for object transfer, (ii) determined psychophysical relationships between actual and perceived weights, and (iii) analyzed load forces and motion features. We then used the findings to design a novel adaptive control scheme to improve the interactions between the user and the system. We implemented the novel control (simulated the system again using the novel control), the subjects evaluated the system, and the results showed that the novel control reduced the excessive load forces and accelerations and thus improved the human-system interactions in terms of maneuverability, safety, and so forth. Finally, we proposed to use the findings to develop power assist systems for manipulating heavy objects in industries that may improve interactions between the systems and the users.


Sign in / Sign up

Export Citation Format

Share Document