Numerical Simulation of Supersonic MHD Channel Flows

Author(s):  
R. S. Amano ◽  
Zhenyu Xu ◽  
Chun-Hian Lee

A compressible magneto hydrodynamic (MHD) model composed of MHD Navier-Stokes (N-S) equations and magnetic induction equations is proposed in the present study for analyzing the magneto hydrodynamic characteristics in the MHD generator and MHD accelerator channels of the Magneto-Plasma-Chemical propulsion system. Baldwin-Lomax turbulence model is utilized. A splitting algorithm based on an alternative iteration is also developed for solving the two sets of equations. As a test case, a supersonic MHD flow in a square duct was simulated. The numerical results are compared with the results computed by solving the classical N-S equations for the perfect gas flow, together with the results computed utilizing the degenerate MHD N-S equations for the same channel flow with constant applied magnetic field. The thermo-electro-magnetic performances of the test cases with constant and variable applied fields are then discussed.

Author(s):  
Z. Xu ◽  
C. Lee ◽  
R. S. Amano

A compressible magnetohydrodynamic (MHD) model composed of MHD Navier-Stokes (N-S) equations and magnetic induction equations is proposed in the present study for analyzing the magnetohydrodynamic characteristics in MHD generator and MHD accelerator channels of Magneto-Plasma-Chemical propulsion system [10∼12]. A splitting algorithm based on an alternative iteration is also developed for solving the two sets of equations [9]. As a test case, a supersonic MHD flow in a square duct was simulated. The numerical results are compared with the results computed by solving the classical N-S equations for the perfect gas flow, together with the results computed utilizing the degenerate MHD N-S equations for the same channel flow with constant applied magnetic field. The thermo-electro-magnetic performances of the test cases with constant and variable applied fields are then discussed.


Author(s):  
Xiaoxu Du ◽  
Huan Wang

The successful operation of an Autonomous Underwater Vehicle (AUV) requires the capability to return to a dock. A number of underwater docking technologies have been proposed and tested in the past. The docking allows the AUV to recharge its batteries, download data and upload new instructions, which is helpful to improve the working time and efficiency. During the underwater docking process, unsteady hydrodynamic interference occurs between the docking device and an AUV. To ensure a successful docking, it is very important that the underwater docking hydrodynamics of AUV is understood. In this paper, numerical simulations based on the computational fluid dynamics (CFD) solutions were carried out for a 1.85m long AUV with maximum 0.2 m in diameter during the docking process. The two-dimensional AUV model without fin and rudder was used in the simulation. The mathematical model based on the Reynolds-averaged Navier-Stokes (RANS) equations was established. The finite volume method (FVM) and the dynamic structured mesh technique were used. SIMPLE algorithm and the k-ε turbulence model in the Descartes coordinates were also adopted. The hydrodynamics characteristics of different docking states were analyzed, such as the different docking velocity, the docking device including baffle or not. The drag coefficients of AUV in the process of docking were computed for various docking conditions, i.e., the AUV moving into the docking in the speed of 1m/s, 2m/s, 5m/s. The results indicate that the drag coefficient increases slowly in the process of AUV getting close to the docking device. When the AUV moves into the docking device, the drag coefficient increases rapidly. Then the drag coefficient decreases rapidly. The drag coefficient decreases with the increase of velocity when AUV enters the docking device. It was also found that the drag coefficient can be effectively reduced by dislodging the baffle of docking device.


Author(s):  
Domenico Borello ◽  
Giovanni Delibra ◽  
Franco Rispoli

In this paper we present an innovative Partially Averaged Navier Stokes (PANS) approach for the simulation of turbomachinery flows. The elliptic relaxation k-ε-ζ-f model was used as baseline Unsteady Reynolds Averaged Navier Stokes (URANS) model for the derivation of the PANS formulation. The well established T-FlowS unstructured finite volume in-house code was used for the computations. A preliminary assessment of the developed formulation was carried out on a 2D hill flow that represents a very demanding test case for turbulence models. The turbomachinery flow here investigated reproduces the experimental campaign carried out at Virginia Tech on a linear compressor cascade with tip leakage. Their measurements were used for comparisons with numerical results. The predictive capabilities of the model were assessed through the analysis of the flow field. Then an investigation of the blade passage, where experiments were not available, was carried out to detect the main loss sources.


2016 ◽  
Vol 13 (04) ◽  
pp. 1641012
Author(s):  
Qingjie Meng ◽  
Decheng Wan

The unsteady viscous flow around a 12000TEU ship model entering the Third Set of Panama Locks with different eccentricity is simulated by solving the unsteady Reynolds averaged Navier–Stokes (RANS) equations in combination with the [Formula: see text]SST turbulence model. Overset grid technology is utilized to maintain grid orthogonality and the effects of the free surface are taken into account. The hydrodynamic forces, vertical displacement as well as surface pressure distribution are predicted and analyzed. First, a benchmark test case is designed to validate the capability of the present methods in the prediction of the viscous flow around the ship when maneuvering into the lock. The accumulation of water in front of the ship during entry into a lock is noticed. A set of systematic computations with different eccentricity are then carried out to examine the effect of eccentricity on the ship–lock hydrodynamic interaction.


2021 ◽  
Vol 14 (2) ◽  
pp. 40-45
Author(s):  
D. V. VORONIN ◽  

The Navier-Stokes equations have been used for numerical modeling of chemically reacting gas flow in the propulsion chamber. The chamber represents an axially symmetrical plane disk. Fuel and oxidant were fed into the chamber separately at some angle to the inflow surface and not parallel one to another to ensure better mixing of species. The model is based on conservation laws of mass, momentum, and energy for nonsteady two-dimensional compressible gas flow in the case of axial symmetry. The processes of viscosity, thermal conductivity, turbulence, and diffusion of species have been taken into account. The possibility of detonation mode of combustion of the mixture in the chamber was numerically demonstrated. The detonation triggering depends on the values of angles between fuel and oxidizer jets. This type of the propulsion chamber is effective because of the absence of stagnation zones and good mixing of species before burning.


Author(s):  
Mari´a A. Mayorca ◽  
Jesu´s A. De Andrade ◽  
Damian M. Vogt ◽  
Hans Ma˚rtensson ◽  
Torsten H. Fransson

An investigation of the sensitivity of a geometrical scaling technique on the blade forcing prediction and mode excitability has been performed. A stage of a transonic compressor is employed as test object. A scaling ratio is defined which indicates the amount of scaling from the original geometry. Different scaling ratios are selected and 3D Navier Stokes unsteady calculations completed for each scaled configuration. A full annulus calculation (non-scaled) is performed serving as reference. The quantity of interest is the generalized force, which gives a direct indication of the mode excitability. In order to capture both up- and downstream excitation effects the mode excitability has been assessed on both rotor and stator blades. The results show that first harmonic excitation can be predicted well for both up- and downstream excitation using moderate amount of scaling. On the other hand, the predictions of second harmonic quantities do show a higher sensitivity to scaling for the investigated test case.


2013 ◽  
Vol 13 (5) ◽  
pp. 1330-1356 ◽  
Author(s):  
G. H. Tang ◽  
G. X. Zhai ◽  
W. Q. Tao ◽  
X. J. Gu ◽  
D. R. Emerson

AbstractGases in microfluidic structures or devices are often in a non-equilibrium state. The conventional thermodynamic models for fluids and heat transfer break down and the Navier-Stokes-Fourier equations are no longer accurate or valid. In this paper, the extended thermodynamic approach is employed to study the rarefied gas flow in microstructures, including the heat transfer between a parallel channel andpressure-driven Poiseuille flows through a parallel microchannel andcircular microtube. The gas flow characteristics are studied and it is shown that the heat transfer in the non-equilibrium state no longer obeys the Fourier gradient transport law. In addition, the bimodal distribution of streamwise and spanwise velocity and temperature through a long circular microtube is captured for the first time.


2000 ◽  
Vol 10 (3) ◽  
pp. 372-379 ◽  
Author(s):  
Dai Jie ◽  
Xu Diao ◽  
Khoo Boo Cheong ◽  
Lam Khin Yong
Keyword(s):  
Gas Flow ◽  

2012 ◽  
Vol 443-444 ◽  
pp. 719-723
Author(s):  
Xiu Ling Ji ◽  
Hai Peng Wang ◽  
Shi Ming Zeng ◽  
Chen Yang Jia

Navier–Stokes simulation is performed on a canard guided spinning projectile for different attack angles and circumferential position angles of canard over the Mach number range of 1.8–2.2. The computational Magnus moment coefficients of test case are validated with available experimental data of a Secant-Ogive-Cylinder-Boattail (SOCBT) configuration at Mach 3, demonstrating that the method can provide an accurate and viable approach for this problem. The aim of the present study is to provide a detailed understanding of the effects of canard with different circumferential position angles on longitudinal aerodynamic coefficients at three supersonic speeds and various angles of attack. And the results show that normal force coefficients and pitch moment coefficients vary periodically with the circumferential position angles of canard.


Sign in / Sign up

Export Citation Format

Share Document