Switched Stiffness Vibration Controllers for Fluidic Flexible Matrix Composites

Author(s):  
Amir Lotfi-Gaskarimahalle ◽  
Christopher D. Rahn

This paper investigates semi-active vibration control using Fluidic Flexible Matrix Composites (F2MC) as variable stiffness components of flexible structures. The stiffness of F2MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2MC tube changes the internal volume when externally loaded. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. When the valve is closed, the high bulk modulus fluid resists volume change and produces high stiffness. The equations of motion of an F2MC-mass system is derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. To capture the important system parameters, nondimensional full order and reduced order models are developed. A Zero Vibration (ZV) state switch technique is introduced that suppresses vibration in finite time, and is compared to conventional Skyhook semiactive control. The ITAE performance of the controllers is optimized by adjusting the open valve flow coefficient. Simulation results show that the optimal ZV controller outperforms the optimal Skyhook controller by 13% and 60% for impulse and step response, respectively.

Author(s):  
Amir Lotfi-Gaskarimahalle ◽  
Ying Shan ◽  
Suyi Li ◽  
Christopher D. Rahn ◽  
Charles E. Bakis ◽  
...  

This paper studies semi-active vibration control using Fluidic Flexible Matrix Composites (F2MC) as variable stiffness structures. The apparent stiffness of F2MC tubes can be changed using a variable orifice valve. With fiber reinforcement, the volume inside the tube may change with external load. With an open valve, the liquid is free to move in or out of the tube, so the apparent stiffness will not changed. When the valve is closed, the high bulk modulus liquid is confined, which resists the volume change and causes the apparent stiffness of the tube to increase. The equations of motion of an F2MC-mass system is derived using a 3D elasticity model and the energy method. A reduced order model is then developed for fully-open or fully-closed valves. A Skyhook valve that cycles the valve between open and closed, asymptotically decays the vibration. A Zero Vibration (ZV) Stiffness Shaping technique is introduced to suppress the vibration in finite time. A sensitivity analysis of the ZV Stiffness Shaper studies the robustness to parameteric uncertainties.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Amir Lotfi-Gaskarimahalle ◽  
Lloyd H. Scarborough ◽  
Christopher D. Rahn ◽  
Edward C. Smith

This paper investigates passive and semi-active vibration control using fluidic flexible matrix composites (F2MC). F2MC tubes filled with fluid and connected to an accumulator through a fixed orifice can provide damping forces in response to axial strain. If the orifice is actively controlled, the stiffness of F2MC tubes can be dynamically switched from soft to stiff by opening and closing an on/off valve. Fiber reinforcement of the F2MC tube kinematically relates the internal volume to axial strain. With an open valve, the fluid in the tube is free to move in or out of the tube, so the stiffness is low. With a closed valve, however, the high bulk modulus fluid resists volume change and produces high axial stiffness. The equations of motion of an F2MC-mass system are derived using a 3D elasticity model and the energy method. The stability of the unforced dynamic system is proven using a Lyapunov approach. A reduced-order model for operation with either a fully open or fully closed valve motivates the development of a zero vibration (ZV) controller that suppresses vibration in finite time. Coupling of a fluid-filled F2MC tube to a pressurized accumulator through a fixed orifice is shown to provide significant passive damping. The open-valve orifice size is optimized for optimal passive, skyhook, and ZV controllers by minimizing the integral time absolute error cost function. Simulation results show that the optimal open valve orifice provides a damping ratio of 0.35 compared with no damping in closed-valve case. The optimal ZV controller outperforms optimal passive and skyhook controllers by 32.9% and 34.2% for impulse and 34.7% and 60% for step response, respectively. Theoretical results are confirmed by experiments that demonstrate the improved damping provided by optimal passive control F2MC and fast transient response provided by semi-active ZV control.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xianjun Sheng ◽  
Yuanli Kong ◽  
Fengyun Zhang ◽  
Rui Yang

Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC). The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Sanjiv Kumar ◽  
Rakesh Sehgal ◽  
Rajiv Kumar

By attaching initially stressed poly vinyl chloride (PVC) layers on the flexible structures, necessary passive damping can be provided. Using passive constrained layers on these PVC layers, the efficiency can be made even better than ordinary passive constrained layer damping (PCLD) treatment. By using stressed PVC layers, a rich performance in case of circuit failure conditions is always available. An active constraining layer further enhances the damping performance of this passive technique. Precompressed layer damping treatment augmented with active constrained layer damping (ACLD) treatment has been suggested, which has many desirable features as compared to existing pretensed layer damping treatment. Such enhancement in damping performance is not possible by conventional ACLD as well as PCLD techniques. The effect of initial strain (compressive or tensile) and other parameters of the PVC layers on the vibration characteristics of flexible structure have been investigated. The Hamilton principle in conjunction with finite element method is used to derive the differential equations of motion. Using proportional feedback controllers, the complex closed loop eigenvalue problem is developed and solved numerically. The effectiveness of the proposed technique has been validated experimentally using a digital linear quadratic Gaussian controller.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Suyi Li ◽  
K. W. Wang

Recently, a cellular structure concept based on fluidic flexible matrix composites (F2MCs) was investigated for its potential of concurrently achieving multiple adaptive functions. Such structure consists of two fluidically connected F2MC cells, and it has been proven capable of dynamic actuation with enhanced authority, variable stiffness, and vibration absorption. The purpose of the research presented in this paper is to develop comprehensive design and synthesis tools to exploit the rich functionality and versatility of this F2MC based system. To achieve this goal, two progressive research topics are addressed: The first is to survey unique architectures based on rigorous mathematical principles. Four generic types of architectures are identified for the dual-cellular structure based on fluidic and mechanical constraints between the two cells. The system governing equations of motion are derived and experimentally tested for these architectures, and it is found that the overall structural dynamics are related to the F2MC cell stiffness, internal pressure difference, and static flow volume between the two cells according to the architectural layout. The second research topic is to derive a comprehensive synthesis procedure to assign the F2MC designs so that the cellular structure can simultaneously reach a set of different performance targets. Synthesis case studies demonstrate the range of performance of the F2MC based cellular structure with respect to different architectures. The outcome of this investigation could provide valuable insights and design methodologies to foster the adoption of F2MC to advance the state of art of a variety of engineering applications. It also lays the foundation for a large-scale “metastructure,” where many pairs of fluidically connected F2MC can be employed as modules to achieve synergetic global performance.


Author(s):  
Amir Lotfi-Gaskarimahalle ◽  
Lloyd H. Scarborough ◽  
Christopher D. Rahn ◽  
Edward C. Smith

This paper presents a novel Tuned Vibration Absorber (TVA) using Fluidic Flexible Matrix Composites (F2MC). Fiber reinforcement of the F2MC tube kinematically links the internal volume with axial strain. Coupling of a fluid-filled F2MC tube through a fluid port to a pressurized air accumulator can suppress primary mass forced vibration at the tuned absorber frequency. 3-D elasticity model for the tube and a lumped fluid mass develops a 4th-order model of an F2MC-mass system. The model provides a closed form isolation frequency that depends mainly on the port inertance, orifice flow coefficient, and the tube parameters. A small amount of viscous damping in the orifice increases the isolation bandwidth. With a fully closed orifice, the zero disappears and the system has a single resonant peak. Variations in the primary mass do not change the isolation frequency, making the F2MC TVA robust to mass variations. Experimental results validate the theoretical predictions in showing a tunable isolation frequency that is insensitive to primary mass variations, and a 94% reduction in forced vibration response relative to the closed-valve case.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Laixi Zhang ◽  
Chenming Zhao ◽  
Feng Qian ◽  
Jaspreet Singh Dhupia ◽  
Mingliang Wu

Vibrations in the aircraft assembly building will affect the precision of the robotic drilling system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the parallel connection of four vertically arranged bearing springs and two symmetrical horizontally arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance method is used to deal with the differential equations of motion. The effects of every parameter on the displacement transmissibility are analyzed, and the variable parameter control strategies are proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms to the segmental variable frequency excitations are compared through virtual prototype experiments. The results show that the frequency range of vibration isolation is widened, and the stability of the vibration control system is effectively improved without resonance through the semiactive vibration control method. It is of innovative significance for ambient vibration control in robotic drilling systems.


Sign in / Sign up

Export Citation Format

Share Document