A Step Toward Risk Mitigation During Conceptual Product Design: Component Selection for Risk Reduction

Author(s):  
Daniel Krus ◽  
Katie Grantham

The objective of this paper is to introduce a method that will mitigate product risks during the conceptual design phase by identifying design variables that affect product failures. By using this comprehensive, step-by-step process that combines existing techniques in a new way, designers can begin with a simple Functional Model and emerge from the conceptual design phase with specific components selected with many risks already mitigated. The Risk in Early Design (RED) method plays a significant role in identifying failure modes by functions, and these modes are then analyzed through modeling equations or lifespan analyses, in such a manner that emphasizes variables under the designers’ control. With the valuable insight this method provides, informed decisions can be made early in the process, thereby eliminating costly changes later on.

Author(s):  
Daniel Krus ◽  
Katie Grantham Lough

When designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these “common interfaces” to be used in conjunction with other methods such as Risk in Early Design in order to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem.


Author(s):  
Ryan S. Hutcheson ◽  
Irem Y. Tumer

NASA’s Ames Research center is currently designing a testbed to validate and compare potential Integrated System Health Management (ISHM) technologies. The proposed testbed represents a typical power system for a spacecraft and includes components such as a fuel cell, solar cells and redundant batteries. To fulfill design requirements, the testbed must be capable of hosting a wide variety of ISHM technologies including those developed by NASA as well as those developed in the aerospace industry abroad. An internal fault injection subsystem must be built into the system to provide a common interface for evaluating these different ISHM technologies. Additionally, to ensure robust operation of the testbed, the capability to detect and manage external faults must also be present. In order to develop a set of requirements for the internal fault injection subsystems as well as predict external faults, a comprehensive set of potential failures must be identified for all of the components of the testbed. To best aid the development of the testbed, these failures needed to be identified as early as the conceptual design phase, where little is known about the actual components that would comprise the finished system. This paper demonstrates the use a function-based failure mode identification method to identify the potential failures of the testbed during the conceptual design phase. Using this approach, designers can explore the potential failure modes at the functional design stage, before a form or solution has been determined. A function-failure database is used to associate the failures of components from previous design efforts to the testbed based on common functionality. The result is a list of potential failure modes and associated failure rates, which are used to improve the design of the testbed as well as provide a framework for the fault injection subsystem.


Author(s):  
Daniel Krus ◽  
Katie Grantham Lough

AbstractWhen designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these common interfaces to be used in conjunction with other methods such as risk in early design to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem.


Author(s):  
Amihud Hari ◽  
Menachem P. Weiss

Abstract It has been established and widely accepted that the early phases of the engineering design process are the most critical to the technical and economical success of a new product. Most of the product’s performance and failures are determined and more than 75% of its life cycle cost is committed during the conceptual design phase. A major step in all conceptual design methodologies is the concept selection phase, where out of the many concepts generated, one is selected and it becomes the basis for the favored solution. Such a selection must be influenced by the potential failure modes, that the product, which is based on the chosen concept, may suffer from and will be exposed to in the future. In the past, the well established Failure Mode and Effects Analysis - FMEA was used for this purpose, but in the system level only. The proposed, new Conceptual Failure Mode Analysis - CFMA is a modified version of FMEA, that was developed for use in the conceptual design phase of a new product. CFMA enables to select the preferred concept (out of many generated), based also on future potential failure modes. CFMA is considered by the authors, as a major and important attribute in concept selection, that can now be taken into account in new concepts evaluation. CFMA is also shown as a vital part of the prescriptive Integrated, Customer Driven, Conceptual Design Method - ICDM, that has recently been introduced by the authors. It is the aim of this paper to introduce CFMA as a substantial additional tool for concept selection.


2017 ◽  
Vol 107 (09) ◽  
pp. 640-646
Author(s):  
J. Jaensch ◽  
A. Neyrinck ◽  
A. Lechler ◽  
A. Prof. Verl

Maschinen und besonders Anlagen werden meist in individuellen Prozessen entwickelt. Bereits in der Angebots- und Konzeptionsphase werden im direkten Austausch mit dem Auftraggeber unterschiedliche Varianten diskutiert und iteriert. Zur Bewertung der Varianten sind neben den Anschaffungskosten unter anderem laufzeitabhängige Größen wie Taktzeiten und Energieeffizienz zu untersuchen. Der Beitrag stellt einen Ansatz zur simulationsbasierten Untersuchung für die automatisierte Variantengenerierung von Anlagen vor.   The development of machines or plants is a very individual process. Within the conceptual design phase, many different variants have to be discussed with customers and adapted to their needs. For a decent evaluation of the different variants, many parameters beyond static values such as costs are important. Term-dependent values like cycle times and energy efficiency also have to be investigated. This paper presents a method for the automated generation of plant variants based on simulation.


2018 ◽  
Vol 29 (11) ◽  
pp. 665-689
Author(s):  
C. Hartmann ◽  
R. Chenouard ◽  
E. Mermoz ◽  
A. Bernard

Author(s):  
R. J. Engel ◽  
P. J. Tyler ◽  
L. R. Wood ◽  
D. T. Entenmann

Westinghouse has been a strong supporter of Reliability, Availability, and Maintainability (RAM) principles during product design and development. This is exemplified by the actions taken during the design of the 501F engine to ensure that high reliability and availability was achieved. By building upon past designs, utilizing those features most beneficial, and improving other areas, a highly reliable product was developed. A full range of RAM tools and techniques were utilized to achieve this result, including reliability allocations, modelling, and effective redesign of critical components. These activities began during the conceptual design phase and will continue throughout the life cycle of these engines until they are decommissioned.


Sign in / Sign up

Export Citation Format

Share Document