Applied Tests of Design Skills: Divergent Thinking Data Analysis and Reliability Studies

Author(s):  
Jami J. Shah ◽  
Roger E. Millsap ◽  
Jay Woodward ◽  
S. M. Smith

A number of cognitive skills relevant to conceptual design were identified. They include Divergent Thinking, Visual Thinking, Spatial Reasoning, Qualitative Reasoning and Problem Formulation. A battery of standardized tests have been developed for these skills. We have previously reported on the contents and rationale for divergent thinking and visual thinking tests. This paper focuses on data collection and detailed statistical analysis of one test, namely the divergent thinking test. This particular test has been given to over 500 engineering students and a smaller number of practicing engineers. It is designed to evaluate four direct measures (fluency, flexibility, originality, quality) and four indirect measures (abstractability, afixability, detailability, decomplexability). The eight questions on the test overlap in some measures and the responses can be used to evaluate several measures independently (e.g., fluency and originality can be evaluated separately from the same idea set). The data on the 23 measured variables were factor analyzed using both exploratory and confirmatory procedures. Two variables were dropped from these exploratory analyses for reasons explained in the paper. For the remaining 21 variables, a four-factor solution with correlated (oblique) factors was deemed the best available solution after examining solutions with more factors. Five of the 21 variables did not load meaningfully on any of the four factors. These indirect measures did not appear to correlate strongly either among themselves, or with the other direct measures. The remaining 16 variables loaded on four factors as follows: The four factors correspond to the different measures belonging to each of the four questions. In other words, the different fluency, flexibility, or originality variables did not form factors limited to these forms of creative thinking. Instead the analyses showed factors associated with the questions themselves (with the exception of questions corresponding to indirect measures). The above four-factor structure was then taken into a confirmatory factor analytic procedure that adjusted for the missing data. After making some adjustments, the above four-factor solution was found to provide a reasonable fit to the data. Estimated correlations among the four factors (F) ranged from a high of .32 for F1 and F2 to a low of .06 for F3 and F4. All factor loadings were statistically significant.

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Jami J. Shah ◽  
Roger E. Millsap ◽  
Jay Woodward ◽  
S. M. Smith

A number of cognitive skills relevant to conceptual design were identified previously. They include divergent thinking (DT), visual thinking (VT), spatial reasoning (SR), qualitative reasoning (QR), and problem formulation (PF). A battery of standardized tests is being developed for these design skills. This paper focuses only on the divergent thinking test. This particular test has been given to over 500 engineering students and a smaller number of practicing engineers. It is designed to evaluate four direct measures (fluency, flexibility, originality, and quality) and four indirect measures (abstractability, afixability, detailability, and decomplexability). The eight questions on the test overlap in some measures and the responses can be used to evaluate several measures independently (e.g., fluency and originality can be evaluated separately from the same idea set). The data on the twenty-three measured variables were factor analyzed using both exploratory and confirmatory procedures. A four-factor solution with correlated (oblique) factors was deemed the best available solution after examining solutions with more factors. The indirect measures did not appear to correlate strongly either among themselves or with the other direct measures. The four-factor structure was then taken into a confirmatory factor analytic procedure that adjusted for the missing data. It was found to provide a reasonable fit. Estimated correlations among the four factors (F) ranged from a high of 0.32 for F1 and F2 to a low of 0.06 for F3 and F4. All factor loadings were statistically significant.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Jami J. Shah ◽  
Jay Woodward ◽  
Steven M. Smith

A number of cognitive skills relevant to conceptual design have been previously identified: divergent thinking, visual thinking, spatial reasoning, qualitative reasoning, and problem formulation. A battery of standardized test has been developed for each of these skills. This is the second paper in a series of papers on testing individual skill level differences in engineers and engineering students. In the first paper, we reported on the theoretical and empirical basis for divergent thinking test, as well as, on test formulation, data collection, norming studies, and statistical validation of that test. This paper focuses similarly on the efforts related to the visual thinking and spatial reasoning in engineering context. We have decomposed visual thinking into six categories: visual comprehension including perceptual speed, visual memory (that is, the visual memory system), visual synthesis mental image manipulation/transformation, spatial reasoning, and graphical expression/elaboration. We discuss the theoretical basis of a comprehensive test for engineers, test composition, trial runs, and computation of reliability measures. The alpha version was given to a small set of subjects to determine clarity of the questions and gauge difficulty level. The beta version was used for norming and test validation from over 500 samples that included engineering students and a smaller number of practicing engineers. Construct validation was achieved through basing the construction of our instrument off other well-known measures of visual thinking, while content validity was assured through thoroughly sampling the domain of visual thinking and including a variety of items both pertinent and specific to the engineering design process. The factor analysis reveals that there are possibly two eigenvalues above 1.0, an indication that it is a stable and accurate instrument. We emphasize that these tests are not just dependent on native abilities, but on education and experience; design skills are teachable and learnable.


Author(s):  
Maryam Khorshidi ◽  
Jami J. Shah ◽  
Jay Woodward

A battery of tests assessing the cognitive skills needed for the conceptual design is being developed. Tests on Divergent thinking and visual thinking are fully developed and validated. The first version of the qualitative reasoning test has also been developed; this paper focuses on the lessons learned from testing of the first version of the test (alpha version) and the improvements made to it since then. A number of problems were developed for each indicator of the qualitative reasoning skill (deductive reasoning, inductive reasoning, analogical reasoning, and abductive reasoning). Later, a protocol study was done with the problems to make sure that the problems assess the desired skills. The problems were also given to a randomly chosen population of undergraduate senior-level or graduate-level engineering students. Data was collected from the test results on the possible correlations between the problems (e.g. technical and non-technical problems); feedback on clarity, time allocation, and difficulty for each problem was also collected. Based on all of the observed correlations, the average performance of the test takers, and test parameters such as validity, reliability, etc. the beta version of the test is constructed.


Author(s):  
Maryam Khorshidi ◽  
Jay Woodward ◽  
Jami J. Shah

A battery of tests for assessing the cognitive skills needed for the conceptual design is being developed. Divergent thinking and visual thinking tests were fully developed and validated previously. This paper focuses on the development of a test on qualitative reasoning skill. Indicators of qualitative reasoning are identified and categorized as: deductive reasoning, inductive reasoning, analogical reasoning, abductive reasoning, and intuitive physics; the derivation of each is based on both cognitive science and empirical studies of design. The paper also considers the metrics for measuring skill levels in different individuals and candidate test items and grading rubric for each skill.


2011 ◽  
Vol 33 (3) ◽  
pp. 348-358 ◽  
Author(s):  
Donald R. Bacon

Direct measures (tests) of the pedagogical effectiveness of team testing and indirect measures (student surveys) of pedagogical effectiveness of team testing were collected in several sections of an undergraduate marketing course with varying levels of the use of team testing. The results indicate that although students perceived team testing to have a substantial impact on their learning, this pedagogy in fact had no impact on direct measures of learning. In an additional analysis, the performance of the team on the group test was best predicted by the best individual performance on the team. Possible explanations and directions for future research are discussed.


2007 ◽  
Vol 129 (7) ◽  
pp. 682-691 ◽  
Author(s):  
Jennifer Kadlowec ◽  
Krishnan Bhatia ◽  
Tirupathi R. Chandrupatla ◽  
John C. Chen ◽  
Eric Constans ◽  
...  

At Rowan University, design has been infused into the curriculum through an eight-semester course sequence called the Engineering Clinics. Through this experience, students learn the art and science of design in a multidisciplinary team environment and hone their design skills throughout their 4-year career. This paper describes the objectives of the clinics, types of projects, and how the clinics complement traditional core courses in the curriculum. Impacts and benefits of the clinics on students and faculty are discussed, including retention and graduate study rates comparing Rowan University mechanical engineering students to their peers nationally. An assessment of the clinics is presented based on survey data and accreditation objectives and outcomes. Survey data from students were assessed to determine levels of students’ satisfaction and confidence based on the clinics. Results of alumni and employer surveys also provide valuable feedback for assessing and improving the clinics as well as confirmation of the impact of clinics after graduation. Survey data are discussed along with challenges of the clinics at Rowan and adaptability of them at other institutions. Overall, the clinics are a positive and integrated design experience in the curriculum and assist students in achieving the program objectives.


2019 ◽  
Vol 12 (1) ◽  
pp. 110 ◽  
Author(s):  
Miguel Romero Di Biasi ◽  
Guillermo Eliecer Valencia ◽  
Luis Guillermo Obregon

This article presents the application of a new educational thermodynamic software called MOLECULARDISORDER, based on graphical user interfaces created in Matlab® to promote critical thinking in youth engineering students, by means of the energy and entropy balance application in different systems. Statistics of the results obtained by the youth students are shown to determine the influence of the software in a regular course in thermodynamics to promote critical thinking. Two case studies were done by the students, where parameters such as temperature of the fluid and metal surfaces, pressure of the system, mass of the fluid and solid, volume, and velocity of the fluid are used to obtain output variables such as enthalpy, entropy, changes in entropy, entropy production, and energy transfer in the chosen system. Four cognitive skills were considered to evaluate the cognitive competencies of interpreting, arguing and proposing, and interacting with the different graphical user interfaces; these cognitive skills (CS) were argumentative claim (CS1), modeling (CS2), interpreting data/information (CS3), and organization (CS4). Student´s T-test was used to compare the degree of difficulty of each criterion. The case studies were evaluated first without using the software and then with the use of the software to determine the significant effect of the software quantitatively. A population of 130 youth students was taken to perform the statistical analysis with a level of significance of 5%. With the help of the software, the students obtained an improvement when performing case study 1 since the p-value obtained was 0.03, indicating that there are significant differences between the results before and after taking the software. The overall averages of the grades for case study 1 had an increase after using the software from 3.74 to 4.04. The overall averages for case study 2 were also higher after taking the software from 3.44 to 3.75.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Megan Hetherington-Rauth ◽  
Jennifer W. Bea ◽  
Vinson R. Lee ◽  
Robert M. Blew ◽  
Janet Funk ◽  
...  

1992 ◽  
Vol 71 (3_suppl) ◽  
pp. 929-933 ◽  
Author(s):  
D.J. White ◽  
R.V. Faller ◽  
W.D. Bowman

Methods used for the analysis of tooth de- and remineralization include techniques with various degrees of sophistication and quantitative capabilities, ranging from direct measures of mineral gain/loss (e.g., microradiography) to indirect measures (e.g., iodide permeability) of changes in tooth mineral properties. In all instances, the capabilities of methods for accurate determination of changes in tooth mineral properties are affected by procedures used in the preparation of specimens for analysis, the magnitude of change taking place in the test (vs. the detection limits of the techniques), and protocols for specimen analysis. In specific instances, such as in the case of dentin, unique specimen-handling and analysis procedures must be used to prevent artifacts. The choice of techniques for the assessment of de- and remineralization depends strongly upon study protocols and laboratory capabilities; however, ‘quantitative’ measures of mineral gain and loss are possible only if direct chemical or radiographic techniques are used. Either radiographic, cross-sectioned microhardness or polarized light can be used for the determination of lesion depth. Porosity, light-scattering, and surface microhardness are indirect techniques which complement direct measures of mineral gain and loss. Whatever methods are used in the analysis of de- and remineralization, researchers must take care to differentiate accurately among the quantitative capabilities of techniques used in analysis.


Sign in / Sign up

Export Citation Format

Share Document