Free Vibration Analysis of a Beam Under Axial Load Carrying a Mass-Spring-Mass

Author(s):  
O. R. Barry ◽  
Y. Zhu ◽  
J. W. Zu ◽  
D. C. D. Oguamanam

This paper deals with the free vibration analysis of a beam subjected to an axial tensile load with an attached in-span mass-spring-mass system. The equations of motion are derived by means of the Hamilton principle and an explicit expression of the frequency equation is presented. The formulation is validated with results in the literature and the finite element method. Parametric studies are done to investigate the effect of the axial load, the magnitude and location of the mass-spring-mass system on the lowest five natural frequencies and mode shapes. The results indicate that the fundamental mode is independent of the tension and the in-span mass. However, a significant change in all modes is observed when the position of the mass-spring-mass is varied.

2011 ◽  
Vol 18 (5) ◽  
pp. 709-726 ◽  
Author(s):  
Yusuf Yesilce

The structural elements supporting motors or engines are frequently seen in technological applications. The operation of machine may introduce additional dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko single-span beams carrying a number of spring-mass system and multi-span beams carrying multiple spring-mass systems are plenty, but the free vibration analysis of Reddy-Bickford multi-span beams carrying multiple spring-mass systems has not been investigated by any of the studies in open literature so far. This paper aims at determining the exact solutions for the natural frequencies and mode shapes of Reddy-Bickford beams. The model allows analyzing the influence of the shear effect and spring-mass systems on the dynamic behavior of the beams by using Reddy-Bickford Beam Theory (RBT). The effects of attached spring-mass systems on the free vibration characteristics of the 1–4 span beams are studied. The natural frequencies of Reddy-Bickford single-span and multi-span beams calculated by using the numerical assembly technique and the secant method are compared with the natural frequencies of single-span and multi-span beams calculated by using Timoshenko Beam Theory (TBT); the mode shapes are presented in graphs.


1999 ◽  
Vol 121 (2) ◽  
pp. 256-258 ◽  
Author(s):  
S. Karunendiran ◽  
J. W. Zu

This paper presents an analytical method adopted for the free vibration analysis of a shaft, both ends of which are supported by resilient bearings. The shaft is modeled by Timoshenko beam theory. Based on this model exact frequency equation to calculate complex eigenvalues is derived and presented in complex compact form for the first time. Explicit expressions to compute the corresponding mode shapes are also presented.


2003 ◽  
Vol 125 (4) ◽  
pp. 764-772 ◽  
Author(s):  
S. D. Yu ◽  
F. Xi

This paper presents a methodology for accurate free vibration analysis of planar flexible mechanisms. Each flexible body is considered as a beam and modelled using higher-order beam elements for longitudinal and flexural deformations. The global equations of motion for a mechanism consisting of multiple flexible bodies are formulated using the augmented Lagrange equations. Free vibration analyses are conducted at desired fast Fourier configurations to determine instantaneous structural natural frequencies and structural mode shapes. Dynamical frequencies and dynamical mode shapes incorporating the gyroscopic effects and dynamic axial loads are obtained using the modal summation method. Numerical results and comparisons are given for a rotating beam and two four-bar crank-rocker mechanisms.


2013 ◽  
Vol 20 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Gürkan Şcedilakar

In this study, free vibration analysis of beams carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring-mass systems subjected to the axial load was performed. All analyses were performed using an Euler beam assumption and the Finite Element Method. The beam used in the analyses is accepted as pinned-pinned. The axial load applied to the beam from the free ends is either compressive or tensile. The effects of parameters such as the number of spring-mass systems on the beam, their locations and the axial load on the natural frequencies were investigated. The mode shapes of beams under axial load were also obtained.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
D. A. Maturi ◽  
A. J. M. Ferreira ◽  
A. M. Zenkour ◽  
D. S. Mashat

The static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to Murakami’s zig-zag (ZZ) function (MZZF) theory . The MZZF theory accounts for through-the-thickness deformation, by considering a ZZ evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions.


2019 ◽  
Vol 25 ◽  
pp. 69-83 ◽  
Author(s):  
Slimane Merdaci

This article presents the free vibration analysis of simply supported plate FG porous using a high order shear deformation theory. In is work the material properties of the porous plate FG vary across the thickness. The proposed theory contains four unknowns unlike the other theories which contain five unknowns. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the plate are simply supported the Navier procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature for non-porous plates. Effects of the exponent graded and porosity factors are investigated.


2002 ◽  
Vol 124 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Akhilesh K. Jha ◽  
Daniel J. Inman ◽  
Raymond H. Plaut

Free vibration analysis of a free inflated torus of circular cross-section is presented. The shell theory of Sanders, including the effect of pressure, is used in formulating the governing equations. These partial differential equations are reduced to ordinary differential equations with variable coefficients using complete waves in the form of trigonometric functions in the longitudinal direction. The assumed mode shapes are divided into symmetric and antisymmetric groups, each given by a Fourier series in the meridional coordinate. The solutions (natural frequencies and mode shapes) are obtained using Galerkin’s method and verified with published results. The natural frequencies are also obtained for a circular cylinder with shear diaphragm boundary condition as a special case of the toroidal shell. Finally, the effects of aspect ratio, pressure, and thickness on the natural frequencies of the inflated torus are studied.


Author(s):  
J-S Wu ◽  
H-M Chou ◽  
D-W Chen

The dynamic characteristic of a uniform rectangular plate with four boundary conditions and carrying three kinds of multiple concentrated element (rigidly attached point masses, linear springs and elastically mounted point masses) was investigated. Firstly, the closed-form solutions for the natural frequencies and the corresponding normal mode shapes of a rectangular ‘bare’ (or ‘unconstrained’) plate (without any attachments) with the specified boundary conditions were determined analytically. Next, by using these natural frequencies and normal mode shapes incorporated with the expansion theory, the equation of motion of the ‘constrained’ plate (carrying the three kinds of multiple concentrated element) were derived. Finally, numerical methods were used to solve this equation of motion to give the natural frequencies and mode shapes of the ‘constrained’ plate. To confirm the reliability of previous free vibration analysis results, a finite element analysis was also conducted. It was found that the results obtained from the above-mentioned two approaches were in good agreement. Compared with the conventional finite element method (FEM), the approach employed in this paper has the advantages of saving computing time and achieving better accuracy, as can be seen from the existing literature.


2019 ◽  
Vol 3 (4) ◽  
pp. 104 ◽  
Author(s):  
Vu Van Tham ◽  
Tran Huu Quoc ◽  
Tran Minh Tu

In this paper, a new four-variable refined shell theory is developed for free vibration analysis of multi-layered functionally graded carbon nanotube-reinforced composite (FG-CNTRC) doubly curved shallow shell panels. The theory has only four unknowns and satisfies zero stress conditions at the free surfaces without correction factor. Five different types of carbon nanotube (CNTs) distribution through the thickness of each FG-CNT layer are considered. Governing equations of simply supported doubly curved FG-CNTRC panels are derived from Hamilton’s principle. The resultant eigenvalue system is solved to obtain the frequencies and mode shapes of the anti-symmetric cross-ply laminated panels by using the Navier solution. The numerical results in the comparison examples have proved the accuracy and efficiency of the developed model. Detailed parametric studies have been carried out to reveal the influences of CNTs volume fraction, CNTs distribution, CNTs orientation, dimension ratios and curvature on the free vibration responses of the doubly curved laminated FG-CNTRC panels.


Sign in / Sign up

Export Citation Format

Share Document