Parametric Resonances of a Spinning Cyclic Symmetric Rotor Assembled to a Flexible Stationary Housing via Multiple Bearings

Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is to present findings from a theoretical study on free vibration and stability of a rotor-bearing-housing system. The rotor is cyclic symmetric and spinning at constant speed, while the housing is stationary and flexible. Moreover, the rotor and housing are assembled via multiple, linear, elastic bearings. For the rotor and the housing, their mode shapes are first obtained in rotor-based and ground-based coordinate systems, respectively. By discretizing the kinetic and potential energies of the rotor-bearing-housing system through use of the mode shapes, a set of equations of motion appears in the form of ordinary differential equations with periodic coefficients. Analyses of the equations of motion indicate that instabilities could appear at certain spin speed in the form of combination resonances of the sum type. To demonstrate the validity of the formulation, two numerical examples are studied. For the first example, the spinning rotor is an axisymmetric disk and the housing is a square plate with a central shaft. Moreover, the rotor and the housing are connected via two linear elastic bearings. Instability appears in the form of coupled vibration between the stationary housing and spinning rotor through three different formats: rigid-body rotor translation, rigid-body rotor rocking, and elastic rotor modes that present unbalanced inertia forces or moments. For the second example, the rotor is cyclic symmetric in the form of a disk with four evenly spaced slots. The housing and bearings remain the same. When the rotor is stationary, natural frequencies and mode shapes predicted from the formulation agree well with those predicted from a finite element analysis, which further ensures the validity of the formulation. When the cyclic symmetric rotor spins, instability appears in the same three formats as in the case of axisymmetric rotor. Number of instability zones, however, increases because the cyclic symmetric rotor has more elastic rotor modes that present unbalanced inertia forces or moments.

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is meant to model free vibration of a coupled rotor-bearing-housing system. In particular, the rotor is cyclic symmetric and spins at constant speed while the housing is stationary and flexible. The rotor and housing are assembled via multiple, linear, elastic bearings. A set of equations of motion is derived using component mode synthesis, in which the rotor and the housing each are treated as a component. The equations of motion take the form of ordinary differential equations with periodic coefficients. Analyses of the equations of motion indicate that instabilities could appear at certain spin speed in the form of combination resonances of the sum type. To demonstrate the validity of the formulation, two numerical examples are studied. For the first example, the spinning rotor is an axisymmetric disk, and the housing is a square plate with a central shaft. The rotor and the housing are connected via two linear elastic bearings. For the second example, the rotor is cyclic symmetric in the form of a disk with four evenly spaced radial slots. The housing and bearings remain the same. In both examples, instability appears as a combination resonance of the sum type between a rotor mode and an elastic housing mode. The cyclic symmetric rotor, however, has more instability zones. Finally, effects of damping are studied. Damping of the housing widens the instability zones, whereas the damping of the rotor does the opposite.


Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is to present an experimental study that measures ground-based response of a spinning, cyclic, symmetric rotor-bearing-housing system. In particular, the study focuses on rotor-housing coupled modes that are significantly dominated by housing deformation. In the experiments, a ball-bearing spindle motor, carrying a disk with four evenly spaced slots (i.e., the rotor), is mounted onto a stationary housing. The housing is a square plate supported with steel spacers at four corners and fixed to the ground. Two different ways are used to excite the rotor-housing system to measure frequency response functions (FRFs). One is to use an automatic hammer tapping at the disk, and the other is to use a piezoelectric actuator attached to the housing. Vibration of the rotor and housing is measured via a laser Doppler vibrometer and a capacitance probe. The experiments consist of two parts. The first part is to obtain FRFs when the rotor is not spinning. The measured FRFs reveal two rotor-housing coupled modes dominated by the housing. Their mode shapes are characterized by one nodal line in housing and one nodal diameter in the rotor. The second part is to obtain waterfall plots when the rotor is spinning at various speeds. The waterfall plots show that the housing dominant modes split into primary branches and secondary branches as the spin speed varies. The primary branches almost do not change with respect to the spin speed. In contrast, the secondary branches evolve into forward and backward branches. Moreover, their resonance frequencies increase and decrease at four times of the spin speed. The measured results agree well with the predictions found in the authors’ previous theoretical study [1].


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Hyunchul Kim ◽  
Nick Theodore Khalid Colonnese ◽  
I. Y. Shen

This paper is to study how the vibration modes of a cyclic symmetric rotor evolve when it is assembled to a flexible housing via multiple bearing supports. Prior to assembly, the vibration modes of the rotor are classified as “balanced modes” and “unbalanced modes.” Balanced modes are those modes whose natural frequencies and mode shapes remain unchanged after the rotor is assembled to the housing via bearings. Otherwise, the vibration modes are classified as unbalanced modes. By applying fundamental theorems of continuum mechanics, we conclude that balanced modes will present vanishing inertia forces and moments as they vibrate. Since each vibration mode of a cyclic symmetric rotor can be characterized in terms of a phase index (Chang and Wickert, “Response of Modulated Doublet Modes to Travelling Wave Excitation,” J. Sound Vib., 242, pp. 69–83; Chang and Wickert, 2002, “Measurement and Analysis of Modulated Doublet Mode Response in Mock Bladed Disks,” J. Sound Vib., 250, pp. 379–400; Kim and Shen, 2009, “Ground-Based Vibration Response of a Spinning Cyclic Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects,” ASME J. Vibr. Acoust. (in press)), the criterion of vanishing inertia forces and moments implies that the phase index by itself can uniquely determine whether or not a vibration mode is a balanced mode as follows. Let N be the order of cyclic symmetry of the rotor and n be the phase index of a vibration mode. Vanishing inertia forces and moments indicate that a vibration mode will be a balanced mode if n≠1,N−1,N. When n=N, the vibration mode will be balanced if its leading Fourier coefficient vanishes. To validate the mathematical predictions, modal testing was conducted on a disk with four pairs of brackets mounted on an air-bearing spindle and a fluid-dynamic bearing spindle at various spin speeds. Measured Campbell diagrams agree well with the theoretical predictions.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is to study ground-based response of a spinning, cyclic symmetric rotor assembled to a flexible housing via multiple bearings. In particular, interaction of the spinning rotor and the flexible housing is manifested theoretically, numerically, and experimentally. In the theoretical analysis, we show that the interaction primarily appears in coupled rotor–bearing–housing modes whose response is dominated by the housing. Specifically, let a housing-dominant mode have natural frequency ω(H) and the spin speed of the rotor to be ω3. In rotor-based coordinates, response of the spinning rotor for the housing-dominant mode will possess frequency splits ω(H)±ω3. In ground-based coordinates, response of the spinning rotor will possess alternative frequency splits ω(H)-(k+1)ω3 and ω(H)-(k-1)ω3, where k is an integer determined by the cyclic symmetry of the rotor and the housing-dominant mode of interest. In the numerical analysis, we study a benchmark model consisting of a spinning slotted disk mounted on a stationary square plate via two ball bearings. The numerical model successfully confirms the frequency splits both in the rotor-based and ground-based coordinates. In the experimental analysis, we conduct vibration testing on a rotor–bearing–housing system that mimics the numerical benchmark model. Test results reveal two housing-dominant modes. As the rotor spins at various speed, measured waterfall plots confirm that the housing-dominant modes split according to ω(H)-(k+1)ω3 and ω(H)-(k-1)ω3 as predicted.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Hyunchul Kim ◽  
I. Y. Shen

This paper is to study ground-based vibration response of a spinning, cyclic, symmetric rotor through a theoretical analysis and an experimental study. The theoretical analysis consists of three steps. The first step is to analyze the vibration characteristics of a stationary, cyclic, symmetric rotor with N identical substructures. For each vibration mode, we identify a phase index n and derive a Fourier expansion of the mode shape in terms of the phase index n. The second step is to predict the rotor-based vibration response of the spinning, cyclic, symmetric rotor based on the Fourier expansion of the mode shapes and the phase indices. The rotor-based formulation includes gyroscopic and centrifugal softening terms. Moreover, rotor-based response of repeated modes and distinct modes is obtained analytically. The third step is to transform the rotor-based response to ground-based response using the Fourier expansion of the stationary mode shapes. The theoretical analysis leads to the following conclusions. First, gyroscopic effects have no significant effects on distinct modes. Second, the presence of gyroscopic and centrifugal softening effects causes the repeated modes to split into two modes with distinct frequencies ω1 and ω2 in the rotor-based coordinates. Third, the transformation to ground-based observers leads to primary and secondary frequency components. In general, the ground-based response presents frequency branches in the Campbell diagram at ω1±kω3 and ω2±kω3, where k is phase index n plus an integer multiple of cyclic symmetry N. When the gyroscopic effect is significantly greater than the centrifugal softening effect, two of the four frequency branches vanish. The remaining frequency branches take the form of either ω1+kω3 and ω2−kω3 or ω1−kω3 and ω2+kω3. To verify these predictions, we also conduct a modal testing on a spinning disk carrying four pairs of brackets evenly spaced in the circumferential direction with ground-based excitations and responses. The disk-bracket system is mounted on a high-speed, air-bearing spindle. An automatic hammer excites the spinning disk-bracket system and a laser Doppler vibrometer measures its vibration response. A spectrum analyzer processes the hammer excitation force and the vibrometer measurements to obtain waterfall plots at various spin speeds. The measured primary and secondary frequency branches from the waterfall plots agree well with those predicted analytically.


Author(s):  
Andrea Arena ◽  
Walter Lacarbonara ◽  
Matthew P Cartmell

Nonlinear dynamic interactions in harbour quayside cranes due to a two-to-one internal resonance between the lowest bending mode of the deformable boom and the in-plane pendular mode of the container are investigated. To this end, a three-dimensional model of container cranes accounting for the elastic interaction between the crane boom and the container dynamics is proposed. The container is modelled as a three-dimensional rigid body elastically suspended through hoisting cables from the trolley moving along the crane boom modelled as an Euler-Bernoulli beam. The reduced governing equations of motion are obtained through the Euler-Lagrange equations employing the boom kinetic and stored energies, derived via a Galerkin discretisation based on the mode shapes of the two-span crane boom used as trial functions, and the kinetic and stored energies of the rigid body container and the elastic hoisting cables. First, conditions for the onset of internal resonances between the boom and the container are found. A higher order perturbation treatment of the Taylor expanded equations of motion in the neighbourhood of a two-to-one internal resonance between the lowest boom bending mode and the lowest pendular mode of the container is carried out. Continuation of the fixed points of the modulation equations together with stability analysis yields a rich bifurcation behaviour, which features Hopf bifurcations. It is shown that consideration of higher order terms (cubic nonlinearities) beyond the quadratic geometric and inertia nonlinearities breaks the symmetry of the bifurcation equations, shifts the bifurcation points and the stability ranges, and leads to bifurcations not predicted by the low order analysis.


Author(s):  
Tariq Z. Sinokrot ◽  
William C. Prescott ◽  
Maurizio Nembrini ◽  
Alessandro Toso

One of the challenging issues in the area of flexible multibody systems is the ability to properly account for the geometric nonlinear effects that are present in many applications. One common application where these effects play an important role is the dynamic modeling of twist beam axles in car suspensions. The purpose of this paper is to examine the accuracy of the results obtained using four common modeling methods used in such applications. The first method is based on a spline beam approach in which a long beam is represented using piecewise rigid bodies interconnected by beam force elements along a spline curve. The beam force elements use a simple linear beam theory in approximating the forces and torques along the beam central axis. The second approach uses the well known method of component mode synthesis that is based on the linear elastic theory. Using this method the deformation of the beam, which is modeled as one flexible body, is defined using its own vibration and static correction mode shapes. The equations of motion are, in this case, written in terms of the system’s generalized coordinates and modal participation factors. The linear elastic theory is used again in the third approach using a slightly different technique called the sub-structuring synthesis method. This method is based on dividing the flexible component into sub-structures, in which, the method of component mode synthesis is used to describe the deformation of each substructure. The fourth approach is based on a co-simulation technique that uses a Multibody System (MBS) solver and an external nonlinear Finite Element Analysis (FEA) solver. The flexibility of any body in the multibody system is, in this case, modeled in the external nonlinear FEA solver. The latter calculates the forces due to the nonlinear deformations of the flexible body in question and communicates that to the MBS solver at certain attachment points where the flexible body is attached to the rest of the multibody system. The displacements and velocities of these attachment points are calculated by the MBS solver and are communicated back to the nonlinear FEA solver to advance the simulation. The four approaches described are reviewed in this paper and a multibody system model of a car suspension system that includes a twist beam axle is presented. The model is examined four times, once using each approach. The numerical results obtained using the different methods are analyzed and compared.


1995 ◽  
Vol 62 (1) ◽  
pp. 193-199 ◽  
Author(s):  
M. W. D. White ◽  
G. R. Heppler

The equations of motion and boundary conditions for a free-free Timoshenko beam with rigid bodies attached at the endpoints are derived. The natural boundary conditions, for an end that has an attached rigid body, that include the effects of the body mass, first moment of mass, and moment of inertia are included. The frequency equation for a free-free Timoshenko beam with rigid bodies attached at its ends which includes all the effects mentioned above is presented and given in terms of the fundamental frequency equations for Timoshenko beams that have no attached rigid bodies. It is shown how any support / rigid-body condition may be easily obtained by inspection from the reported frequency equation. The mode shapes and the orthogonality condition, which include the contribution of the rigid-body masses, first moments, and moments of inertia, are also developed. Finally, the effect of the first moment of the attached rigid bodies is considered in an illustrative example.


Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is to study free response of a spinning, cyclic symmetric rotor assembled to a flexible housing via multiple bearings. In particular, the rotor spins at a constant speed ω3, and the housing is excited via a set of initial displacements. The focus is to study ground-based response of the rotor through theoretical and numerical analyses. The paper consists of three parts. The first part is to briefly summarize an equation of motion of the coupled rotor-bearing-housing systems for the subsequent analyses. The equation of motion, obtained from prior research [1], employs a ground-based and a rotor-based coordinate system to the housing and the rotor, respectively. As a result, the equation of motion takes the form of a set of ordinary differential equations with periodic coefficients of frequency ω3. To better understand its solutions, a numerical model is introduced as an example. In this example, the rotor is a disk with four radial slots and the housing is a square plate with a central shaft. The rotor and housing are connected via two ball bearings. The second part of the paper is to analyze the rotor’s response in the rotor-based coordinate system theoretically. When the rotor is at rest, let ωH be the natural frequency of a coupled rotor-bearing-housing mode whose response is dominated by the housing. The theoretical analysis then indicates that response of the spinning rotor will possess frequency components ωH ± ω3 demonstrating the interaction of the spinning rotor and the housing. The theoretical analysis further shows that this splitting phenomenon results from the periodic coefficients in the equation of motion. The numerical example also confirms this splitting phenomenon. The last part of the paper is to analyze the rotor’s response in the ground-based coordinate system. A coordinate transformation shows that the ground-based response of the spinning rotor consists of two major frequency branches ωH − (k + 1) ω3 and ωH − (k − 1) ω3, where k is an integer determined by the cyclic symmetry and vibration modes of interest. The numerical example also confirms this derivation.


Author(s):  
T. N. Shiau ◽  
E. K. Lee ◽  
Y. C. Chen ◽  
T. H. Young

The paper presents the dynamic behaviors of a geared rotor-bearing system under the effects of the residual shaft bow, the gear eccentricity and excitation of gear’s transmission error. The coupling effect of lateral and torsional motions is considered in the dynamic analysis of the geared rotor-bearing system. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The dynamic characteristics including system natural frequencies, mode shapes and steady-state response are investigated. The results show that the magnitude of the residual shaft bow, the phase angle between gear eccentricity and residual shaft bow will significantly affect system natural frequencies and steady-state response. When the spin speed closes to the second critical speed, the system steady state response will be dramatically increased by the residual shaft bow for the in-phase case. Moreover the zero response can be obtained when the system is set on special conditions.


Sign in / Sign up

Export Citation Format

Share Document