Simulating Part and Assembly Variation for Injection Molded Parts

Author(s):  
Samuel Lorin ◽  
Lars Lindkvist ◽  
Rikard Söderberg

Final geometrical variation and deviation have often a negative effect on product functionality and aesthetics. In the automotive industry, design concepts are being evaluated and optimized to withstand variation in the early phase of product development. For this end, simulation tools are employed. Input to these simulations is requirements on parts and fixtures or measurements from previously manufactured parts. In the case of plastic components, parts are often manufactured in the injection molding process. Here, different materials and process settings can make it difficult to predict deviation and variation based on similar parts. In order to perform accurate assembly variation simulation, part variation simulation need, therefore, to be included. In this work a methodology is presented to simulate part and assembly variation, due to process noise, for plastic components manufactured in the injection molding process. The methodology is based on designed computer experiment and utilizes the concept of geometrical covariance and principal component analysis to relate process noise to variation patterns using regression analysis. Part and assembly variation are simulated combined using the distribution of these variation patterns. The model used for part variation simulation has been verified against commercial injection molding software showing good agreement. An industrial case from the automotive industry is used to elicit the proposed methodology.

2021 ◽  
Vol 58 (3) ◽  
pp. 121-128
Author(s):  
Leslie Sanchez-Castillo ◽  
Dorian Nedelcu ◽  
Misaela Francisco-Marquez

This study presents a Solidworks� Plastics application in a company in the Automotive Industry for the aftermarket of auto parts manufactured by the injection molding process, the focus is on the redesign of an injection vein plate for achieve uniform filling of a 16 cavity mold with a geometry made up of a mixture of natural rubber and two metal components. This work proves that the use of symmetrical commands is not always the best option. The distances between runners were not taken into account as a source of the future wears problems in the mold. A layout is created with a combination of 2D and 3D sketches by turning the injection chanels 180� in the problem cavities to increase the distances between runners and the filling of the 16 cavities is verified by simulation. It is also demonstrated by simulation that increasing the injection point size is not necessarily always the best option for cavity filling.


2018 ◽  
Vol 19 (1-2) ◽  
pp. 48-51
Author(s):  
Grzegorz Janowski

The growing needs for miniaturization of plastic parts motivates to the development of micro injection molding technology. Characteristic features of this process such as: low manufacturing costs, short process duration, the ability to produce details of various dimensions and a wide range of plastic properties allow to mass dissemination of this technology. Research on micro injection molding develops in a very fast time, which gives high hopes for a successful overcoming of the real limitations of this technology. This gives a great perspective on the development of the possibility of using micro injection parts e.g. in the automotive industry. This paper presents the possibilities of manufacturing molds for micro injection molding. The issue of process optimization has been discussed, taking into consideration the main technological parameters influencing the quality of micro-part. In addition, the possibility of using microdetals, including the automotive industry was presented.


2019 ◽  
Vol 16 (1) ◽  
pp. 33-42
Author(s):  
Mariane Bigarelli Ferreira ◽  
Murillo Vetroni Barros ◽  
Cassiano Moro Piekarski

Goal: Companies are increasingly concerned about the life cycle of their products in the economic and environmental perspectives. One of the processes that generates great financial returns is the injection molding process. But this process results in many impacts to the environment. The environmental concern has generated many studies involving this theme and the difficulty of measuring the impacts generated by this process. In view of the environmental concern and the injection molding process this study aims to review in the literature on eco-design tools based on the Streamlined Life Cycle Assessment of plastic injection molded products.Design / Methodology / Approach: The review of the literature was carried out by researching for complete articles published in three databases (Science Direct, Scopus and Web of Science), among the years 2013 - 2018, using combinations of keywords and Boolean operators.Results: Several studies revealed that injection molding generates many impacts, such as the high consumption of electricity caused by the emission of greenhouse gases and use of raw material.Limitations of the investigation: This paper is not free of limitations. The study analyzed the literature through three databases for a period of time and used a combination of keywords. It may be that some document has not been analyzed.Practical implications: The development of a rapid tool for the application of LCA studies will allow quick decision-making to the managers in the environmental perspective, besides reducing costs, reducing time with the application of complex studies, and assisting the designer to develop the Eco-design.Originality / Value: The study addressed the injection molding process and there are no studies in the literature that characterize this theme. Thus, a study that addresses this gap and evidences the importance of the development of an environmental tool that assists sustainable practices in the process of plastic injection molding becomes important.


2019 ◽  
Vol 38 ◽  
pp. 1338-1346 ◽  
Author(s):  
Cláudia Macedo ◽  
Cláudia Freitas ◽  
António M. Brito ◽  
Gilberto Santos ◽  
Luis Faria ◽  
...  

Author(s):  
A. Alvarado-Iniesta ◽  
D.J. Valles-Rosales ◽  
J.L. García-Alcaraz ◽  
A. Maldonado-Macias

Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in products manufactured through injection molding. Five process parameters areemployed for being considered to be critical and have a great impact on the warpage of plastic components. Thisstudy used the finite element analysis software Moldflow to simulate the injection molding process to collect data inorder to train and test the recurrent neural network. Recurrent neural networks were used to understand the dynamicsof the process and due to their memorization ability, warpage values might be predicted accurately. Results show thedesigned network works well in prediction tasks, overcoming those predictions generated by feedforward neuralnetworks.


2013 ◽  
Vol 133 (4) ◽  
pp. 105-111
Author(s):  
Chisato Yoshimura ◽  
Hiroyuki Hosokawa ◽  
Koji Shimojima ◽  
Fumihiro Itoigawa

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 965 ◽  
Author(s):  
Nguyen Truong Giang ◽  
Pham Son Minh ◽  
Tran Anh Son ◽  
Tran Minh The Uyen ◽  
Thanh-Hai Nguyen ◽  
...  

In the injection molding field, the flow of plastic material is one of the most important issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In this paper, we present our research on the injection molding process with pre-heating by external gas-assisted mold temperature control. After this, we observed an improvement in the melt flow length into thin-walled products due to the high mold temperature during the filling step. In addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified. The simulations and experiments were carried out within an air temperature of 400 °C and heating time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature control (Ex-GMTC), with the application of various FFD types for the temperature distribution of the insert plate. The heating process was applied for a simple insert model with dimensions of 50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result. After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the FFD influence was estimated by the mold heating result and the improvement of the melt flow length using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with the highest temperature being 321.2 °C. Likewise, the actual results show that the height of the flow focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD gives the best results with a maximum temperature of 332.3 °C. Moreover, the heating efficiency when using FFD is always higher than without FFD. After examining the effect of FFD, its application was considered, in order to improve the melt flow length in injection molding, which increased from 38.6 to 170 mm, while the balance of the melt filling was also clearly improved.


Sign in / Sign up

Export Citation Format

Share Document