Design and Fabrication of Safe, Light-Weight, Flying Robots

Author(s):  
Yash Mulgaonkar ◽  
Terry Kientz ◽  
Mickey Whitzer ◽  
Vijay Kumar

This work presents the design, fabrication, and testing of a novel lightweight yet sturdy cage for micro aerial vehicles. Fabricated from a polymer infused 12k carbon-fiber using a smart liquid silicone rubber (LSR) molding process, the cage weighs only 3g and is capable of sustaining impacts at speeds up to 6m/s. We also quantitatively and qualitatively characterize the rigidity and stiffness of the cage using a universal testing machine. This paper subsequently describes the fabrication methodology employed for designing the cage to achieve the high strength-weight ratio. This involves 3D printing, silicon rubber molding, plaster mold rotocasting, wet layup of carbon fiber and finally autoclaving. Finally we demonstrate a 23g autonomous, pico quadrotor capable of sustaining stable flight with collisions with the environment.

2019 ◽  
Vol 11 (3) ◽  
pp. 147-156
Author(s):  
Prabhat SINGH ◽  
Bhagel SINGH

This paper presents an experimental study on the development of biocomposite material by using sawdust (SD) and rice husk (RH). The use of composite in the present production has increased dramatically since the 1970’s. Traditional material like aluminum, steel, iron and copper etc. may be easily replaced by using this classical biocomposites. The tensile test, hardness and tear resistance test were conducted in a Universal testing machine as per ASTM D638, ASTM D2240 and ASTM D1004 standard, respectively. Although commercial industries have increasingly been concerned with the low cost, light weight and eco-friendly material, the biocomposite material has also a great potential for reduced production cost and low maintenance which have proven to be a main factor in a push towards recycled biocomposites. In this paper we have fabricated a biocomposite model from materials like sawdust, rice husk. The main reason to use biocomposites is that they are more economical and have high strength to weight ratio compared to glass fibers. Hence fabricated material can be used for various applications.


2022 ◽  
Vol 1048 ◽  
pp. 3-8
Author(s):  
J. Allen Jeffrey ◽  
S. Suresh Kumar ◽  
V. Anusha Roseline ◽  
A. Lazar Mary ◽  
D. Santhosh

In modern engineering low-density composites plays a vital role of which magnesium alloys are very effective due to its high strength with better corrosion resistance and neat cast ability. In this work a micron sized Boron carbide ceramic (B4C) of about 100 microns is diffused as a reinforcement with AZ91 for preparing a magnesium metal matrix composite (MMMC) through stir casting route. A modified pit furnace setup is used for doing stir casting with varying volume fractions of 0% and 3% of boron carbide for doing the composites. Furthermore mechanical and metallurgical properties like Tensile test is made through universal testing machine, Micro-hardness through Vickers hardness tester and Micro structure through Optical Microscopy is done for investigation.


2015 ◽  
Vol 766-767 ◽  
pp. 355-361
Author(s):  
S. Sivasaravanan ◽  
V.K. Bupesh Raja ◽  
S. Prabhu ◽  
S. Dineshkumar ◽  
Gokulaprasad

Usage of Hybrid nanocomposite materials provides a greater opportunity to replace the conventional materials due to their properties such as light weight and high strength to based on weight ratio. In this synergitic study, nanosized clay particle and layered double hydroxide particles are used. nanoclay and LDH particles were mixed on the bases of weight percentage (1wt% to 5wt%) by ultra sonication technique. The composite material was fabricated by one of the most common method known as hand lay-up technique. The composite materials was prepared in the form of plate with 4mm of thickness.The characterization of tensile and flexural property of the nanoclay, LDH and combination of both was analysis by tensile test using universal testing machine and three point bending test respectively. The tensile and three point bending test specimens were cut to size as per ASTM standard.The morphology of composite was studied using SEM analysis.


2020 ◽  
Vol 18 (11) ◽  
pp. 801-805
Author(s):  
Kyung-Soo Jeon ◽  
R. Nirmala ◽  
Seong-Hwa Hong ◽  
Yong-II Chung ◽  
R. Navamathavan ◽  
...  

This manuscript is dealt with the synthesis of short carbon fibers reinforced polycarbonate polymer composite by using injection modeling technique. Four different composite materials were obtained by varying the carbon fibers weight percentage of 10, 20, 30 and 40%. The synthesized carbon fibers/polycarbonate composites were characterized for their morphological, mechanical and thermal properties by means of scanning electron microscopy (SEM), universal testing machine (UTM) and IZOD strength test. The resultant carbon fibers/polycarbonate composites exhibited excellent interfacial adhesion between carbon fibers and polycarbonate resin. The tensile properties were observed to be monotonically increases with increasing carbon fiber content in the composite resin. The tensile strength of carbon fiber/polycarbonate composites with the carbon fiber content 40% were increased about 8 times than that of the pristine polycarbonate matrix. The carbon fibers/polycarbonate composites with 40 wt.% of short carbon fibers exhibited a high tensile strength and thermal conductivity. The incorporation of carbon fiber in to polycarbonate resin resulted in a significant enhancement in the mechanical and the thermal behavior. These studies suggested that the short carbon fiber incorporated polycarbonate composite matrix is a good candidate material for many technological applications.


2014 ◽  
Vol 14 (2) ◽  
pp. 46-56
Author(s):  
M. Ashok Kumar ◽  
A.M.K. Prasad ◽  
D.V. Ravishankar ◽  
G. Giridhar

Abstract The effect of the fiber orientation in a laminate is investigated experimentally when subjected repeated quasistatic indentation. All the laminates with different fiber orientation are subjected to indentation with a stainless steel spherical indenter of diameter 8.0mm on a universal testing machine for a maximum indenter displacement of 4mm. The rate of indenter displacement was 0.5mm/minute. Different parameters like load bearing capacity, indentation diameter, area of surface damage, etc., were recorded after 4mm of indenter displacement. All the parameters were studied and compared to evaluate the laminate with high strength


2020 ◽  
Vol 28 (04) ◽  
pp. 2050032
Author(s):  
Hoang Minh Khoa Nguyen ◽  
Dong-Wook Oh

Short-fiber reinforced polymer composites have been widely used in industrial applications due to high strength-to-weight ratio, versatile manufacturing process, and etc. The alignment of fiber type additives plays an important role in the mechanical properties of a composite material. In this paper, an injection molding process was imitated with a liquid polymer composite flow inside a [Formula: see text] elbow channel. We performed a flow visualization experiment and analyzed the additive alignment of carbon fiber flowing in the polydimethylsiloxane (PDMS) medium. By analyzing the flow visualization images, the angle changes at the corner region of the elbow channel were calculated. At the corner region, the change of passage direction leads to the change of fiber orientation. It was observed that near to the convex region, fibers have angle change values larger than the fibers traveling near to the concave region.


Nowadays polymer composites are emerged material which is used for extensive variety of applications because of their exclusive and beautiful characters. They have high durability, high strength-to-weight ratio and abrasion resistance. In this study the mechanical characteristics of coir and wood dust particle reinforced polyester composites using hand layup process were analyzed. The prepared composites were characterized using Scanning Electron Microscope and also the mechanical behaviors such as tensile strength and flexural strength were estimated using computerized testing machine


2021 ◽  
Author(s):  
MATHEW SCHEY ◽  
SCOTT STAPLETON ◽  
TIBOR BEKE

Carbon fiber reinforced plastics (CFRPs) are widely used due to their high strength to weight ratios. A common process manufacturers use to increase the strength to weight ratio is debulking. Debulking is the process of transversely compacting a dry fibrous reinforcement prior to wet out with the matrix resin, in order to induce fiber nesting, effectively increasing the volume fraction of the sample. While this process is widely understood macroscopically its effects on fibrous microstructures have not yet been well characterized. The aim of this work is to compare the microstructures of three CFRPs, varying only the debulking step in the manufacturing process. The microstructural effects of debulking on three unidirectional CFRPs made from three different levels of debulking were studied. High resolution serial sections of all three samples were taken using the UES ROBO-MET at the NASA Glenn Research Center in Cleveland, Ohio. Using these scans, the fiber positions were measured and connected to make fiber paths. Statistical descriptors such as local fiber and void volume fractions, and void distribution and morphology were then generated for each sample and compared. Using these descriptors, the effects of debulking on the composite microstructure can be measured.


2011 ◽  
Vol 82 ◽  
pp. 178-183 ◽  
Author(s):  
Nilamber Kumar Singh ◽  
Ezio Cadoni ◽  
Maloy K. Singha ◽  
Narinder K. Gupta

This paper presents the mechanical behavior of advanced high strength steel, Dual Phase 1200 steel (DP1200) at high strain rates (250s-1- 750s-1) under tensile loading. The mechanical behavior of materials depends on the loading rates. The accurate knowledge of the mechanical behavior of materials at high strain rates is essential in order to improve the safety against crash, impacts and blast loads. High strain rate experiments are performed on modified Hopkinson bar (MHB) apparatus; however, some quasi-static (0.001s-1) tests are also conducted on electromechanical universal testing machine at tensile loads. Based on the experimental results, the material parameters of the existing Cowper-Symonds and Johnson-Cook models are determined. These models fit the experimental data well and hence can be recommended for the numerical simulation of the problems involving this material at high strain rates.


Sign in / Sign up

Export Citation Format

Share Document