Robot Arm Platform for Additive Manufacturing Using Multi-Plane Toolpaths

Author(s):  
Ismayuzri Bin Ishak ◽  
Joseph Fisher ◽  
Pierre Larochelle

This article discusses the concept of using an industrial robot arm platform for additive manufacturing. The concept being explored is the integration of existing additive manufacturing process technologies with an industrial robot arm to create a 3D printer with a multi-plane layering capability. The objective is to develop multi-plane toolpath motions that will leverage the increased capability of the robot arm platform compared to conventional gantry-style 3D printers. This approach enables print layering in multiple planes whereas existing conventional 3D printers are restricted to a single toolpath plane (e.g. x-y plane). This integration combines the fused deposition modeling techniques using an extruder head that is typically used in 3D printing and a 6 degree of freedom robot arm. Here, a Motoman SV3X is used as the platform for the robot arm. A higher level controller is used to control the robot and the extruder. To communicate with the robot, MotoCom SDK libraries is used to develop the interfacing software between the higher level controller and the robot arm controller. The integration of these systems enabled multi-plane toolpath motions to be utilized to produce 3D printed parts. A test block has been 3D printed using this integrated system.

2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Nanang Ali Sutisna ◽  
Rakha Amrillah Fattah

The method of producing items through synchronously depositing material level by level, based on 3D digital models, is named Additive Manufacturing (AM) or 3D-printing. Amongs many AM methods, the Fused Deposition Modeling (FDM) technique along with PLA (Polylactic acid) material is commonly used in additive manufacturing. Until now, the mechanical properties of the AM components could not be calculated or estimated until they've been assembled and checked. In this work, a novel approach is suggested as to how the extrusion process affects the mechanical properties of the printed component to obtain how the parts can be manufactured or printed to achieve improved mechanical properties. This methodology is based on an experimental procedure in which the combination of parameters to achieve an optimal from a manufacturing experiment and its value can be determined, the results obtained show the effect of the extrusion process affects the mechanical properties.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1080 ◽  
Author(s):  
Raúl Sanz-Horta ◽  
Carlos Elvira ◽  
Alberto Gallardo ◽  
Helmut Reinecke ◽  
Juan Rodríguez-Hernández

The fabrication of porous materials for tissue engineering applications in a straightforward manner is still a current challenge. Herein, by combining the advantages of two conventional methodologies with additive manufacturing, well-defined objects with internal and external porosity were produced. First of all, multi-material fused deposition modeling (FDM) allowed us to prepare structures combining poly (ε-caprolactone) (PCL) and poly (lactic acid) (PLA), thus enabling to finely tune the final mechanical properties of the printed part with modulus and strain at break varying from values observed for pure PCL (modulus 200 MPa, strain at break 1700%) and PLA (modulus 1.2 GPa and strain at break 5–7%). More interestingly, supercritical CO2 (SCCO2) as well as the breath figures mechanism (BFs) were additionally employed to produce internal (pore diameters 80–300 µm) and external pores (with sizes ranging between 2 and 12 μm) exclusively in those areas where PCL is present. This strategy will offer unique possibilities to fabricate intricate structures combining the advantages of additive manufacturing (AM) in terms of flexibility and versatility and those provided by the SCCO2 and BFs to finely tune the formation of porous structures.


2021 ◽  
Author(s):  
M. Hossein Sehhat ◽  
Ali Mahdianikhotbesara ◽  
Farzad Yadegari

Abstract The widespread use of Additive Manufacturing (AM) has been extensively progressed in the past decade due to the convenience provided by AM in rapid and reliable part production. Fused Deposition Modeling (FDM) has witnessed even faster growth of application as its equipment is environmentally-friendly and easily adaptable. This increased use of FDM to manufacture prototypes and finished parts is accompanied by concerns that 3D printed parts do not perform the same as relatively homogeneous parts produced by molding or machining. As the interface between two faces of bonded material may be modeled by stress elements, in theory by modeling 3D printed layers subjected to tension at varying angles as transformed stress elements, the stress required to break the layer bonds can be determined. To evaluate such a relationship, in this study, the stresses calculated from stress transformation were compared with the behavior of 3D printed specimens subjected to tensile loads.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5240
Author(s):  
Filip Górski ◽  
Radosław Wichniarek ◽  
Wiesław Kuczko ◽  
Magdalena Żukowska

This paper presents the results of experiments conducted on a batch of additively manufactured customized prosthetic sockets for upper limbs, made of thermoplastics and designed automatically on the basis of a 3D-scanned limb of a 3-year-old patient. The aim of this work was to compare sockets made of two different materials—rigid PLA and elastic TPE. Two distinct socket designs with various mounting systems were prepared. To find a reliable set of parameters for cheap and stable manufacturing of usable prostheses using 3D printers, realizing the fused deposition modeling (FDM) process, sets of sockets were manufactured with various process parameters. This paper presents the methodology of the design, the plan of the experiments and the obtained results in terms of process stability, fit and assessment by patient, as well as strength of the obtained sockets and their measured surface roughness. The results are promising, as most of the obtained products fulfil the strength criteria, although not all of them meet the fitting and use comfort criteria. As a result, recommendations of materials and process parameters were determined. These parameters were included in a prototype of the automated design and production system developed by the authors, and prostheses for several other patients were manufactured.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025223
Author(s):  
Thomas M. Calascione ◽  
Nathan A. Fischer ◽  
Thomas J. Lee ◽  
Hannah G. Thatcher ◽  
Brittany B. Nelson-Cheeseman

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Sign in / Sign up

Export Citation Format

Share Document