Additively Manufactured Tags for Cast Part Traceability Using Two-Dimensional Digital Code Direct-Part-Marking

Author(s):  
Tekin Uyan ◽  
Kalle Jalava ◽  
Juhani Orkas ◽  
Kevin Otto

Abstract Statistical quality control is applied in factories and foundries to identify special cause defects and to identify root causes through statistical correlation of process input variations to defects. A difficulty arises in associating process data collected with individual cast parts as they are worked through the foundry and out into the supply chain. Typically, alphanumeric labels for marking castings and manual identification of the castings with route-paper based tracing approaches have been used. Such manual based systems make root cause analysis of quality defect issues tedious. We here develop a semi-automated approach using 3D printed sand mold inserts shaped as 2D matrix codes which thereby permit directly cast identification code into the parts. This enables automated part tracking at the very beginning of the casting process including mold making. Automated scan-based tracking of parts through a foundry and subsequent supply chain allows for statistical process data collected to also be associated with each part processed with unique identification.

Author(s):  
Tekin Uyan ◽  
Kalle Jalava ◽  
Juhani Orkas ◽  
Kevin Otto

AbstractStatistical quality control is used in foundries to identify special cause defects and root causes by correlating process input variations with casting defects. A difficulty exists in associating process data collected with individual cast parts as the parts are processed through the foundry and then out into the supply chain. Typically, alphanumeric labels for marking castings and manual identification of the castings with route-paper based tracing approaches have been used. Such manual-based systems make root cause analysis of quality defect issues tedious. This study presents the development of a semi-automated approach using 3D printed sand mold inserts shaped as 2D matrix codes which thereby permit directly cast identification code into the parts. This enables automated part tracking at the very beginning of the casting process including mold making. Automated scan based tracking of parts through a foundry and subsequent supply chain allows for statistical process data collected to also be associated with each part processed with unique identification, building upon the part history and pedigree.


2020 ◽  
Vol 12 (14) ◽  
pp. 5817 ◽  
Author(s):  
David Israel Contreras-Medina ◽  
Luis Miguel Contreras-Medina ◽  
Joaliné Pardo-Nuñez ◽  
Luis Alberto Olvera-Vargas ◽  
Carlos Mario Rodriguez-Peralta

Technologies are essential for productive sectors to increase competitiveness and improve sustainable development. However, the technology benefits present a great delay in adoption in agricultural sectors, due to discrepancies between scientific research and local needs. This article presents a study for improving sustainability practices in the coffee supply chain, using emerging technologies, of two localities in the Frailesca region from Chiapas, Mexico, based on the current situation, expectations and actions expressed by 165 coffee producers and 12 representatives of two coffee producers’ organizations. Based on Mentzer theoretical support, the technology roadmaps, knowledge management and digital compass were used to draw coffee supply chain processes to identify concrete actions and explore technologies. The results show that the technological route must be focused on renewing and improving coffee quality, getting quality certifications and access to specialized markets. Digital quality management and advanced statistical process control seem to be the appropriate emerging technologies for enhancing the acquisition of resistant varieties, proper pest management, improvement in the collection of coffee beans, the right time and way to plant a coffee plant, soil analysis and for the management of weeds and water conservation and harvesting as sustainable practices in this region. In addition, statistical correlation showed that digital technologies can be better adopted, on average, by producers with 4–6 family members, aged between 40–44 years and without additional crops. The findings propose sustainable practices linked with emerging technologies, based on a technology roadmap and knowledge management methodologies for this region.


Author(s):  
Robert Andrews ◽  
Fahame Emamjome ◽  
Arthur H.M. ter Hofstede ◽  
Hajo A. Reijers

Author(s):  
Houda Mezouar ◽  
Abdellatif El Afia

The purpose of this paper is to develop an approach to analyse and evaluate continuity in Service Supply Chain (SSC), through a case study. This approach is based on the data-driven quality strategy "Define, Measure, Analyze, Improve, Control" (DMAIC) which is used to drive Six Sigma projects, and on the characteristics of Smart Supply Chain. It combines Business process management (BPM), Supply Chain Operations Reference (SCOR), and the Root cause analysis tree diagram. The chosen case study is the electricity SCC, especially the business process 'management of electricity for residential buildings' of the Moroccan electricity SSC. The paper shows that the suggested approach identifies the discontinuity causes for the studied SSC, improves the business process behavior and manages its control by providing a dashboard that encompasses KPIs for periodically controlling of the SSC "to-be" state.


2014 ◽  
Vol 7 (4) ◽  
pp. 407-415 ◽  
Author(s):  
A.J. Alldrick

Mycotoxins provide additional challenges to food businesses in terms of successful management of food-safety management systems. These reflect, in part, an unusually high dependency on the activities of others in the supply chain to ensure that levels of contamination remain within set limits. Consequently analyses for mycotoxins by food businesses are primarily commissioned for one or a combination of two reasons: to determine compliance with regulatory or commercial standards or; as part of an exercise to verify the efficacy of the businesses foodsafety management systems. Given the regulatory/commercial implications, the standard of evidence needed to demonstrate (non)compliance will be the greater than that needed for simple verification. Consequently, decisions relating to matters of regulatory or commercial arbitration need to be based on agreed and well defined methods of analysis, which are normally laboratory-based. These data are also often sufficient to be used to verify foodsafety management systems. However, supply conditions may predicate the need for increased levels of verification and rapid mycotoxin test-kits have the potential to both meet this need and satisfy the requirements of statistical process control. Nevertheless, it is important to note that deployment of such test-kits cannot be considered to be a ‘turnkey’ exercise and that, as in the case of laboratory-based assays, care must be taken in the validation and subsequent verification of their use for a given material being used within a food business. In particular, this means demonstrating under local conditions that results from the use of these test-kits are comparable to those that would be obtained using official or reference methods.


2011 ◽  
Vol 690 ◽  
pp. 65-68 ◽  
Author(s):  
Fady Refaat Elsayed ◽  
Norbert Hort ◽  
Mario Alberto Salgado Ordorica ◽  
Karl Ulrich Kainer

Permanent mold casting is a well-established route for casting large magnesium alloys components. Casting parameters like superheat, mold temperature, and holding time can often result in inhomogeneous properties, porosity, and segregation problems in the cast part. In order to optimize the casting process, control of the casting parameters including mold temperatures and holding times is essential to promote directional solidification, and ensure defect free homogenous structure. Binary Mg-9wt.%Al and Mg-10wt.%Gd alloys were used to investigate the effect of casting parameters such as melt temperature and holding time on the part macro and microstructure.


Author(s):  
Somchart Thepvongs ◽  
Brian M. Kleiner

Consistent with the precepts of total quality control and total quality management, there has been a resource shift from incoming and outgoing inspection processes to statistical quality control of processes. Furthermore, process control operators are responsible for their own quality, necessitating the in-process inspection of components. This study treated the statistical process control task of “searching” control charts for out-of-control conditions as an inspection task and applied the Theory of Signal Detection to better understand this behavior and improve performance. Twelve subjects participated in a research study to examine how the portrayal of control chart information affected signal detection theory measures. The type of display did not have a significant effect on the sensitivity and response criterion of subjects. These results are discussed in terms of the applicability of Signal Detection Theory in control chart decision making as well as implications on display design.


2017 ◽  
Vol 17 (1) ◽  
pp. 174-178 ◽  
Author(s):  
B. Chokkalingam ◽  
V. Raja ◽  
J. Anburaj ◽  
R. Immanual ◽  
M. Dhineshkumar

Abstract Metal casting process involves processes such as pattern making, moulding and melting etc. Casting defects occur due to combination of various processes even though efforts are taken to control them. The first step in the defect analysis is to identify the major casting defect among the many casting defects. Then the analysis is to be made to find the root cause of the particular defect. Moreover, it is especially difficult to identify the root causes of the defect. Therefore, a systematic method is required to identify the root cause of the defect among possible causes, consequently specific remedial measures have to be implemented to control them. This paper presents a systematic procedure to identify the root cause of shrinkage defect in an automobile body casting (SG 500/7) and control it by the application of Pareto chart and Ishikawa diagram. with quantitative Weightage. It was found that the root causes were larger volume section in the cope, insufficient feeding of riser and insufficient poured metal in the riser. The necessary remedial measures were taken and castings were reproduced. The shrinkage defect in the castings was completely eliminated.


2020 ◽  
Vol 9 (1) ◽  
pp. e000797
Author(s):  
Victoria Woolner ◽  
Reena Ahluwalia ◽  
Hilary Lum ◽  
Kevin Beane ◽  
Jackie Avelino ◽  
...  

Delays to adequate analgesia result in worse patient care, decreased patient and provider satisfaction and increased patient complaints. The leading presenting symptom to emergency departments (EDs) is pain, with approximately 34 000 such patients per year in our academic hospital ED and 3300 visits specific for musculoskeletal (MSK) injuries. Our aim was to reduce the time-to-analgesia (TTA; time from patient triage to receipt of analgesia) for patients with MSK pain in our ED by 55% (to under 60 min) in 9 months’ time (May 2018). Our outcome measures included mean TTA and ED length of stay (LOS). Process measures included rates of analgesia administration and of use of medical directives. We obtained weekly data capture for Statistical Process Control (SPC) charts, as well as Mann-Whitney U tests for before-and-after evaluation. We performed wide stakeholder engagement, root cause analyses and created a Pareto Diagram to inform Plan–Do–Study–Act (PDSA) cycles, which included: (1) nurse-initiated analgesia at triage; (2) a new triage documentation aid for medication administration; (3) a quick reference medical directive badge for nurses; and (4) weekly targeted feedback of the project’s progress at clinical team huddle. TTA decreased from 129 min (n=153) to 100 min (22.5%; n=87, p<0.05). Special cause variation was identified on the ED LOS SPC chart with nine values below the midline after the first PDSA. The number of patients that received any analgesia increased from 42% (n=372) to 47% (n=192; p=0.13) and those that received them via medical directives increased from 22% (n=154) to 44% (n=87; p<0.001). We achieved a significant reduction of TTA and an increased use of medical directives through front-line focused improvements.


Sign in / Sign up

Export Citation Format

Share Document