Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty

Author(s):  
Wei Chen ◽  
Ruichen Jin ◽  
Agus Sudjianto

The importance of sensitivity analysis in engineering design cannot be over-emphasized. In design under uncertainty, sensitivity analysis is performed with respect to the probabilistic characteristics. Global sensitivity analysis (GSA), in particular, is used to study the impact of variations in input variables on the variation of a model output. One of the most challenging issues for GSA is the intensive computational demand for assessing the impact of probabilistic variations. Existing variance-based GSA methods are developed for general functional relationships but require a large number of samples. In this work, we develop an efficient and accurate approach to GSA that employs analytic formulations derived from metamodels of engineering simulation models. We examine the types of GSA needed for design under uncertainty and derive generalized analytical formulations of GSA based on a variety of metamodels commonly used in engineering applications. The benefits of our proposed techniques are demonstrated and verified through both illustrative mathematical examples and the robust design for improving vehicle handling performance.

2021 ◽  
Author(s):  
Zhouzhou Song ◽  
Zhao Liu ◽  
Can Xu ◽  
Ping Zhu

Abstract In real-world applications, it is commonplace that the computational models have field responses, i.e., the temporal or spatial fields. It has become a critical task to develop global sensitivity analysis (GSA) methods to measure the effect of each input variable on the full-field. In this paper, a new sensitivity analysis method based on the manifold of feature covariance matrix (FCM) is developed for quantifying the impact of input variables on the field response. The method firstly performs feature extraction on the field response to obtain a low-dimensional FCM. An adaptive feature selection method is proposed to avoid the FCM from singularity. Thereby, the field response is represented by a FCM, which lies on a symmetric positive-definite matrix manifold. Then, the GSA technique based on the Cramér-von Mises distance for output valued on the Riemannian manifold is introduced for estimating the sensitivity indices for field response. An example of a temporal field and an example of a 2-D displacement field are introduced to demonstrate the applicability of the proposed method in estimating global sensitivity indices for field solution. Results show that the proposed method can distinguish the important input variables correctly and can yield robust index values. Besides, the proposed method can be implemented for GSA for field responses of different dimensionalities.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Shufang Song ◽  
Lu Wang

Global sensitivity analysis (GSA) is a useful tool to evaluate the influence of input variables in the whole distribution range. Variance-based methods and moment-independent methods are widely studied and popular GSA techniques despite their several shortcomings. Since probability weighted moments (PWMs) include more information than classical moments and can be accurately estimated from small samples, a novel global sensitivity measure based on PWMs is proposed. Then, two methods are introduced to estimate the proposed measure, i.e., double-loop-repeated-set numerical estimation and double-loop-single-set numerical estimation. Several numerical and engineering examples are used to show its advantages.


Author(s):  
Souransu Nandi ◽  
Tarunraj Singh

The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates.


SPE Journal ◽  
2013 ◽  
Vol 19 (04) ◽  
pp. 621-635 ◽  
Author(s):  
Cheng Dai ◽  
Heng Li ◽  
Dongxiao Zhang

Summary Reservoir simulations involve a large number of formation and fluid parameters, many of which are subject to uncertainties owing to the combination of spatial heterogeneity and insufficient measurements. Accurately quantifying the impact of varying parameters on simulation models can reveal the importance of the parameters, which helps in designing field-characterization strategies and determining parameterization for history matching. Compared with the commonly used local sensitivity analysis (SA), global SA considers the whole variation range of the parameters and can thus provide more-complete information. However, the traditional global sensitivity analysis that is derived from Monte Carlo simulation (MCS) is computationally too demanding for reservoir simulations. In this study, we propose an alternative approach that is both accurate and efficient. In the proposed approach, the model outputs such as pressure and reservoir production quantities are expressed by polynomial chaos expansions (PCEs). The probabilistic collocation method is used to determine the coefficients of the polynomial expansions by solving outputs at different sets of collocation points by means of the original partial-differential equations. Then, a proxy is constructed with such coefficients. Accurate statistical sensitivity indices of the uncertainty parameters can be obtained by running the proxy. We validate the approach with 2D examples by comparing with the MCS-based global SA. It is found that with only a small fraction of the computational cost required by the MCS approach, the new approach gives accurate global sensitivity for each parameter. The proposed approach is also demonstrated on a large-scale 3D black-oil model, for which the MCS-based global SA is found to be computationally infeasible. It is found that the developed approach possesses the following key advantages: It requires a much smaller number of reservoir simulations for accurate global SA; it is nonintrusive and can be implemented with existing codes or simulators; and it can accommodate arbitrary distributions of parameters encountered in realistic geological situations.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Yuan Wang ◽  
Jie Ren ◽  
Shaobin Hu ◽  
Di Feng

Salt precipitation is generated near the injection well when dry supercritical carbon dioxide (scCO2) is injected into saline aquifers, and it can seriously impair the CO2 injectivity of the well. We used solid saturation (Ss) to map CO2 injectivity. Ss was used as the response variable for the sensitivity analysis, and the input variables included the CO2 injection rate (QCO2), salinity of the aquifer (XNaCl), empirical parameter m, air entry pressure (P0), maximum capillary pressure (Pmax), and liquid residual saturation (Splr and Sclr). Global sensitivity analysis methods, namely, the Morris method and Sobol method, were used. A significant increase in Ss was observed near the injection well, and the results of the two methods were similar: XNaCl had the greatest effect on Ss; the effect of P0 and Pmax on Ss was negligible. On the other hand, with these two methods, QCO2 had various effects on Ss: QCO2 had a large effect on Ss in the Morris method, but it had little effect on Ss in the Sobol method. We also found that a low QCO2 had a profound effect on Ss but that a high QCO2 had almost no effect on the Ss value.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Cheng ◽  
Zhenzhou Lu ◽  
Luyi Li

An extending Borgonovo’s global sensitivity analysis is proposed to measure the influence of fuzzy distribution parameters on fuzzy failure probability by averaging the shift between the membership functions (MFs) of unconditional and conditional failure probability. The presented global sensitivity indices can reasonably reflect the influence of fuzzy-valued distribution parameters on the character of the failure probability, whereas solving the MFs of unconditional and conditional failure probability is time-consuming due to the involved multiple-loop sampling and optimization operators. To overcome the large computational cost, a single-loop simulation (SLS) is introduced to estimate the global sensitivity indices. By establishing a sampling probability density, only a set of samples of input variables are essential to evaluate the MFs of unconditional and conditional failure probability in the presented SLS method. Significance of the global sensitivity indices can be verified and demonstrated through several numerical and engineering examples.


Author(s):  
Tian Longfei ◽  
Lu Zhenzhou ◽  
Hao Wenrui

The uncertainty of the in-plane mechanical properties of the laminate used in an aircraft wing structure is investigated. Global sensitivity analysis is used to identify the source of the uncertainties of the response performance. Due to the limitations of the existing global sensitivity analysis method for nonlinear models with correlated input variables, a new one using nonlinear regression is proposed. Furthermore, a contribution matrix is defined for engineering convenience. Two nonlinear numerical examples are employed in this article to demonstrate the ability of the proposed global sensitivity analysis method. After applying the proposed global sensitivity analysis method to the laminate model, the contribution matrices are obtained; from these matrices, researchers can identify the dominant variance contributions that contribute the most to the response variance. Factor analysis is then employed to analyze the global sensitivity analysis results and determine the most efficient methods to decrease the variances of the in-plane elastic constants. Monte Carlo simulation is used to demonstrate the efficiency of the methods in decreasing the variances.


2021 ◽  
Author(s):  
Emilie Rouzies ◽  
Claire Lauvernet ◽  
Bruno Sudret ◽  
Arthur Vidard

Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before considering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study, we explored how global sensitivity analysis can be applied to the recent PESHMELBA pesticide transfer model to quantify uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample due to computational cost and spatialized output. We compared Sobol' indices obtained from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random Forest surrogate model. Results showed the consistency of the different methods and they highlighted the relevance of Sobol' indices to capture interactions between parameters. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a valuable insight into the model hydrodynamical behaviour. The methodology proposed in this paper may be extended to other modular and distributed hydrological models as there has been a growing interest in these methods in recent years.


Sign in / Sign up

Export Citation Format

Share Document