Explicit Algorithm for Robot Manipulator Dual Dynamics

Author(s):  
Vladimir Brodsky ◽  
Moshe Shoham

Abstract Kinematicians have used dual numbers to obtain rigid body kinematics in a compact three-dimensional form by substituting dual for real numbers in the equation of rotational motion. No such simple relation, known as ‘principle of transference’, existed however, for dynamics. The commonly used inertia binor by which dual momentum is calculated, raises the dual dynamic equations to six dimensions. In fact, the inertia binor does not act on the dual vector as a whole, but rather on its real and dual parts as two distinct real vectors. The recently introduced dual mass operator can serve as the missing link between the dual kinematic and the dual dynamic equations. It gives the mass a dual property which has a complementary sense of Clifford’s dual unit, namely, it reduces a motor to a rotor proportional to the vector part of the motor. With this definition of mass, the same equation of momentum and its time derivative, which holds for a linear motion, holds for both linear and angular motion of a rigid body if dual force, dual velocity, and dual inertia replace their real counterparts. Application of the dual inertia operator and motor transformation rule permits derivation of an explicit dynamic algorithm of a serial manipulator which has several advantages over the more conventional Newton-Euler and Lagrange formulations. Firstly, all the expressions of this algorithm are explicit parts of the dual transformation matrices and the constant link-attached inertia parameters. Secondly, this algorithm is an explicit, not a recursive one and does not require derivative of any one of its terms. It rather gives all coefficients of the dynamic equations in a simple and compact form of determinants and vector scalar product.

1994 ◽  
Vol 116 (4) ◽  
pp. 1089-1095 ◽  
Author(s):  
V. Brodsky ◽  
M. Shoham

The principle of transference states that when dual numbers replace real ones all laws of vector algebra, which describe the kinematics of rigid body with one point fixed, are also valid for motor algebra, which describes a free rigid body. No such direct extension exists, however, for dynamics. Rather, the inertia binor is used to obtain the dual momentum, from which the dual equations of motion are derived. This raises the dual dynamic equations to six dimensions, and in fact, does not act on the dual vector as a whole, but on its real and dual parts as two distinct real vectors. Moreover, in order to obtain the dual force as a derivative of the dual momentum in a correct order, real and dual parts have to be artificially interchanged. In this investigation the dual inertia operator, which allows direct relation of dual momentum to dual velocity, is introduced. It gives the mass a dual property which has the inverse sense of Clifford’s dual unit, namely, it reduces a motor to a rotor proportional to the vector part of the former. In a way analogous to the principle of transference, the same equation of momentum and its time derivative, which holds for a linear motion, holds for both linear and angular motion of a rigid body if dual force, dual velocity, and dual inertia replace their real counterparts. It is shown that by systematic application of the dual inertia for derivation of the dual momentum and the dual energy, both Newton-Euler and Lagrange formulations of equations of motion are obtained in a complete three-dimensional dual form. As an example, these formulations are used to derive the inverse dual dynamic equations of a robot manipulator.


2013 ◽  
Vol 344 ◽  
pp. 37-40
Author(s):  
Ning Sun ◽  
Huan Yu Li ◽  
Jing Jing Gong

On the basis of Coordinate transformation analysis of the inertia parameters in three-dimensional space, according to the characteristic that the coordinate direction is existed and unique which the product of inertia is 0 when rotating the coordinate system, a new method to judge and calculate the particle information by searching for the intersection of the two lines that lead from two different coordinate origin is proposed. The processes and procedures to calculate the internal mass of rigid body are deduced theoretically. A special numerical example is given to verify the correctness of the theory. The error factors are analyzed qualitatively as well.


1975 ◽  
Vol 42 (3) ◽  
pp. 552-556 ◽  
Author(s):  
A. J. Padgaonkar ◽  
K. W. Krieger ◽  
A. I. King

The computation of angular acceleration of a rigid body from measured linear accelerations is a simple procedure, based on well-known kinematic principles. It can be shown that, in theory, a minimum of six linear accelerometers are required for a complete definition of the kinematics of a rigid body. However, recent attempts in impact biomechanics to determine general three-dimensional motion of body segments were unsuccessful when only six accelerometers were used. This paper demonstrates the cause for this inconsistency between theory and practice and specifies the conditions under which the method fails. In addition, an alternate method based on a special nine-accelerometer configuration is proposed. The stability and superiority of this approach are shown by the use of hypothetical as well as experimental data.


2017 ◽  
Vol 73 (5) ◽  
pp. 387-402 ◽  
Author(s):  
Gregory S. Chirikjian ◽  
Sajdeh Sajjadi ◽  
Bernard Shiffman ◽  
Steven M. Zucker

In molecular-replacement (MR) searches, spaces of motions are explored for determining the appropriate placement of rigid-body models of macromolecules in crystallographic asymmetric units. The properties of the space of non-redundant motions in an MR search, called a `motion space', are the subject of this series of papers. This paper, the fourth in the series, builds on the others by showing that when the space group of a macromolecular crystal can be decomposed into a product of two space subgroups that share only the lattice translation group, the decomposition of the group provides different decompositions of the corresponding motion spaces. Then an MR search can be implemented by trading off between regions of the translation and rotation subspaces. The results of this paper constrain the allowable shapes and sizes of these subspaces. Special choices result when the space group is decomposed into a product of a normal Bieberbach subgroup and a symmorphic subgroup (which is a common occurrence in the space groups encountered in protein crystallography). Examples of Sohncke space groups are used to illustrate the general theory in the three-dimensional case (which is the relevant case for MR), but the general theory in this paper applies to any dimension.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Zhu ◽  
Xin Chen ◽  
Chuntao Li

The problem of UAV trajectory tracking is a difficult issue for scholars and engineers, especially when the target curve is a complex curve in the three-dimensional space. In this paper, the coordinate frames during the tracking process are transformed to improve the tracking result. Firstly, the basic concepts of the moving frame are given. Secondly the transfer principles of various moving frames are formulated and the Bishop frame is selected as a final choice for its flexibility. Thirdly, the detailed dynamic equations of the moving frame tracking method are formulated. In simulation, a moving frame of an elliptic cylinder helix is formulated precisely. Then, the devised tracking method on the basis of the dynamic equations is tested in a complete flight control system with 6 DOF nonlinear equations of the UAV. The simulation result shows a satisfactory trajectory tracking performance so that the effectiveness and efficiency of the devised tracking method is proved.


1999 ◽  
Vol 17 (2-3) ◽  
pp. 172-185 ◽  
Author(s):  
J. A. Snyman ◽  
F. Tonder

Author(s):  
Nikolay Makeyev ◽  

A qualitative research of the field of phase trajectories of the system of dynamic equations of an absolutely rigid body was carried out, moving around the selected pole under the influence of gyroscopic, dissipative forces and Coriolis inertia forces. The equations of body motion are reduced to a dynamical system generating a Lorentz attractor. Under parametric constraints imposed on the equations of a dynamical system, the structure of its phase trajectories is described depending on the values of the system parameters.


Sign in / Sign up

Export Citation Format

Share Document