Analysis of Operating Deflection Shapes Based on Subspace Method

Author(s):  
Nobutaka Tsujiuchi ◽  
Yuichi Matsumura ◽  
Takayuki Koizumi

Abstract In this paper, we propose the new method to identify the Operating Deflection Shapes (ODSs) from the measurement data of time domain. At first, we present the identification scheme of ODSs based on a state-space model. Then the scheme is extended to identify the ODSs adaptively for the time-varying systems by using the URV Decomposition (URVD). Proposed scheme is able to decompose the deformation of a structure under operating condition into the underlying superposition of well excited frequency components. This paper introduces the algorithm and shows the effectiveness of our proposed scheme applyed for both synthesized and experimental data.

2020 ◽  
Author(s):  
Shaowen Liu ◽  
Massimiliano Caporin ◽  
Sandra Paterlini

Author(s):  
Michel Touw ◽  
Jacob Lotz ◽  
Ido Akkerman

In this paper we investigate the efficacy of augmenting, or replacing, an active height control system for a submerged hydrofoil with a passive system based on springs and dampers. A state-space model for submerged hydrofoils is formulated and extended to allow for a suspension at the front wing, aft wing or both wings. The model is partially verified by obtaining results in the fixed-wing limit and comparing these with experimental data from the MARIN Foiling Future Demonstrator. In the current study we limit ourselves to translational springs, only allowing suspension motion in the heave direction. This results in unfavorable behavior: either the motions increased or the system becomes unstable. It is therefore recommended for future research to try rotational springs.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Rong He ◽  
Hong Zhou

The time-domain substructure inverse matrix method has become a popular method to detect and diagnose problems regarding vehicle noise, vibration, and harshness, especially for those impulse excitations caused by roads. However, owning to its reliance on frequency response functions (FRFs), the approach is effective only for time-invariable linear or weak nonlinear systems. This limitation prevents this method from being applied to a typical vehicle suspension substructure, which shows different nonlinear characteristics under different wheel transient loads. In this study, operational excitation was considered as a key factor and applied to calculate dynamic time-varying FRFs to perform accurate time-domain transient vibration transfer path analysis (TPA). The core idea of this novel method is to divide whole coupled substructural relationships into two parts: one involved time-invariable components; normal FRFs could be obtained through tests directly. The other involved numerical computations of the time-domain operational loads matrix and FRFs matrix in static conditions. This method focused on determining dynamic FRFs affected by operational loads, especially the severe transient ones; these loads are difficult to be considered in other classical TPA approaches, such as operational path analysis with exogenous inputs (OPAX) and operational transfer path analysis (OTPA). Experimental results showed that this new approach could overcome the limitations of the traditional time-domain substructure TPA in terms of its strict requirements within time-invariable systems. This is because in the new method, time-varying FRFs were calculated and used, which could make the FRFs at the system level directly adapt to time-varying systems from time to time. In summary, the modified method extends TPA objects studied in time-invariable systems to time-varying systems and, thus, makes a methodology and application innovation compared to traditional the time-domain substructure TPA.


2016 ◽  
Vol 5 (3) ◽  
pp. 117
Author(s):  
I PUTU GEDE DIAN GERRY SUWEDAYANA ◽  
I WAYAN SUMARJAYA ◽  
NI LUH PUTU SUCIPTAWATI

The purpose of this research is to forecast the number of Australian tourists arrival to Bali using Time Varying Parameter (TVP) model based on inflation of Indonesia and exchange rate AUD to IDR from January 2010 – December 2015 as explanatory variables. TVP model is specified in a state space model and estimated by Kalman filter algorithm. The result shows that the TVP model can be used to forecast the number of Australian tourists arrival to Bali because it satisfied the assumption that the residuals are distributed normally and the residuals in the measurement and transition equations are not correlated. The estimated TVP model is . This model has a value of mean absolute percentage error (MAPE) is equal to dan root mean square percentage error (RMSPE) is equal to . The number of Australian tourists arrival to Bali for the next five periods is predicted: ; ; ; ; and (January - May 2016).


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Huihong Zhao ◽  
Chenghui Zhang

This paper is concerned with the finite-timeH∞filtering problem for linear continuous time-varying systems with uncertain observations andℒ2-norm bounded noise. The design of finite-timeH∞filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-timeH∞filtering problem is solved. A numerical example is given to illustrate the performance of theH∞filter.


2009 ◽  
Author(s):  
Yow-Jen Jou ◽  
Chien-Lun Lan ◽  
George Maroulis ◽  
Theodore E. Simos

2018 ◽  
Vol 167 ◽  
pp. 02015
Author(s):  
Xunxing Yu ◽  
Kuanmin Mao ◽  
Yaming Zhu

Unbalance is one of essential problems for modern rotating machines. In this work, an improved time-varying observer is proposed to estimate the unbalance of rigid rotor during acceleration. In order to fitting different speed acceleration laws, the unbalance forces have been included in an new designed augmented states, meanwhile the state space model of rigid rotor has been also developed. The developed state space model is transformed to a canonical transformation and a new designed time-varying observer can be obtained. The estimated unbalances can be directly obtained by using this time-varying observer. This method would be very helpful for active balancing control strategy during acceleration.


Author(s):  
Xiao Hu ◽  
Shaohua Lin ◽  
Scott Stanton ◽  
Wenyu Lian

Battery thermal management for high power applications such as electrical vehicle (EV) or hybrid electrical vehicle (HEV) is crucial. Modeling is an indispensable tool to help engineers design better battery cooling systems. While computational fluid dynamics (CFD) has been used quite successfully for battery thermal management, CFD models can be too large and too slow for repeated transient thermal analysis, especially for a battery module or pack. A state space model based on CFD results can be used to replace the original CFD model. The state space model runs approximately two orders of magnitude faster and yet under some conditions obtains equivalent results as the original CFD model. The state space model is based on linear and time-invariant (LTI) system theory. The main limitation of the method is that the method applies strictly speaking to systems that satisfy both linearity and time invariance conditions. General battery cooling problems unfortunately do not strictly satisfy those two conditions. This paper examines quantitatively the amount of error involved if these two conditions are not met. It turns out that these conditions can be relaxed in some ways while preserving satisfactory results for non-linear and time-varying battery thermal systems. This paper also discusses non-linear curve fitting needed for the method.


Sign in / Sign up

Export Citation Format

Share Document