Position Analysis in Analytical Form of the 3-PSP Mechanism

Author(s):  
Raffaele Di Gregorio ◽  
Vincenzo Parenti-Castelli

Abstract In this paper the direct and the inverse position analysis of a 3-dof fully-parallel mechanism, known as 3-PSP mechanism, is addressed and solved in analytical form. The 3-PSP mechanism consists of two rigid bodies, one movable (platform) and the other fixed (base), connected to each other by means of three equal serial kinematic chains (legs) of type PSP, P and S standing for prismatic and spherical pair respectively. Both the direct and the inverse position analysis of this mechanism lead to non-linear equations that are difficult to solve. In particular, the inverse position analysis comprises different sub-problems which need specific solution techniques. Finally a numerical example is reported.

1999 ◽  
Vol 123 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Raffaele Di Gregorio ◽  
Vincenzo Parenti-Castelli

In this paper the direct and the inverse position analysis of a 3-dof fully-parallel mechanism, known as 3-PSP mechanism, is addressed and solved in analytical form. The 3-PSP mechanism consists of two rigid bodies, one movable (platform) and the other fixed (base), connected to each other by means of three equal serial kinematic chains (legs) of type PSP, P and S standing for prismatic and spherical pair respectively. Both the direct and the inverse position analysis of this mechanism lead to nonlinear equations that are difficult to solve. In particular, the inverse position analysis comprises different subproblems which need specific solution techniques. Finally a numerical example is reported.


2005 ◽  
Vol 128 (1) ◽  
pp. 264-271 ◽  
Author(s):  
Raffaele Di Gregorio

A wide family of parallel manipulators (PMs) is the one that groups all PMs with three legs where the legs become kinematic chains constituted of a passive spherical pair (S) in series with either a passive prismatic pair (P) or a passive revolute pair (R) when the actuators are locked. The topologies of the structures generated by these manipulators, when the actuators are locked, are ten. Two out of these topologies are the SR-2PS topology (one SR leg and two PS legs) and the SP-2RS topology (one SP leg and two RS legs). This paper presents two algorithms. The first one determines all the assembly modes of the SR-2PS structures. The second one determines all the assembly modes of the SP-2RS structures. The presented algorithms can be applied without changes to solve, in analytical form, the direct position analysis (DPA) of all the parallel manipulators that generate a SR-2PS structure or a SP-2RS structure when the actuators are locked. In particular, the closure equations of two generic structures, one of type SR-2PS and the other of type SP-2RS, are written. The eliminants of the two systems of equations are determined and the solution procedures are presented. Finally, the proposed procedures are applied to real cases. This work demonstrates that (i) the DPA solutions of any PM that becomes a SR-2PS structure are at most eight, and (ii) the DPA solutions of any PM that becomes a SP-2RS structure are at most sixteen.


Author(s):  
Raffaele Di Gregorio

A wide family of parallel manipulators (PMs) is the one that groups all the PMs with three legs where the legs become kinematic chains constituted of a passive spherical pair (S) in series with either a passive prismatic pair (P) or a passive revolute pair (R) when the actuators are locked. The topologies of the structures generated by these manipulators, when the actuators are locked, are ten. One out of these topologies is the SR-2PS topology (one SR leg and two PS legs). This paper presents an algorithm that determines all the assembly modes of the structures with topology SR-2PS in analytical form. The presented algorithm can be applied without changes to solve, in analytical form, the direct position analysis of any parallel manipulator which generates a SR-2PS structure when the actuators are locked. In particular, the closure equations of a generic structure with topology SR-2PS are written. The eliminant of this system of equations is determined and the solution procedure is presented. Finally, the proposed procedure is applied to a real case. This work demonstrates that the solutions of the direct position analysis of any parallel manipulator which generates a SR-2PS structure when the actuators are locked are at most eight.


2015 ◽  
Vol 783 ◽  
pp. 77-82
Author(s):  
Francesco Aggogeri ◽  
Nicola Pellegrini ◽  
Riccardo Adamini

This paper presents a fuzzy logic to solve the inverse kinematics problem. As the complexity of robot increases, obtaining the inverse kinematics solution requires the solution of non linear equations having transcendental functions are difficult and computationally expensive. This study focuses on a serial manipulator modelled as a serial chain of rigid bodies connected by joints. A new fuzzy interactive algorithm is developed and the effectiveness is compared with other methods on a SCARA robot. It converge in all the developed simulations showing a robust performance.


2011 ◽  
Vol 35 (3) ◽  
pp. 437-459 ◽  
Author(s):  
Soheil Zarkandi ◽  
Hamid R. Mohammadi Daniali

This paper presents direct kinematic analysis of a family of 3R1T parallel manipulators, while R and T denote the rotational and translational degrees of freedom respectively. The manipulators consist of two rigid bodies, a movable platform and a fixed (base) connected to each other by four active legs and one constraining passive leg. First, the direct position kinematics of the manipulators is analyzed. For a general manipulator of this class, this analysis results in a univariate polynomial of degree 30 along with a set of other univariate polynomials of degree 16 and 4 respectively. However, for a special architecture of the manipulators, it is shown that the direct position kinematics leads to a minimal univariate polynomial of degree 12. A numerical example is also included to confirm the results. Moreover, direct velocity and direct kinematic singularities of the manipulators are analyzed using Jacobian matrices.


2012 ◽  
Vol 562-564 ◽  
pp. 1168-1171
Author(s):  
Er Jiang Zhang ◽  
Yong Gang Li

This article presents a direct position analysis of a reconfigurable 2PRS-2PUS parallel mechanism. Based on the structural features of this new mechanism, take the absolute coordinates of the four balls vice center on movable platform as the output variables, a direct position analysis which using elimination method is presented. The solution is verified by a group of numerical examples, which given by matlab. In addition, graphical representations of the real solutions are presented.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Fu-Qun Zhao ◽  
Sheng Guo ◽  
Hai-Jun Su ◽  
Hai-Bo Qu ◽  
Ya-Qiong Chen

Abstract As the structures of multiarm robots are serially arranged, the packaging and transportation of these robots are often inconvenient. The ability of these robots to operate objects must also be improved. Addressing this issue, this paper presents a type of multiarm robot that can be adequately folded into a designed area. The robot can achieve different operation modes by combining different arms and objects. First, deployable kinematic chains (DKCs) are designed, which can be folded into a designated area and be used as an arm structure in the multiarm robot mechanism. The strategy of a platform for storing DKCs is proposed. Based on the restrictions in the storage area and the characteristics of parallel mechanisms, a class of DKCs, called base assembly library, is obtained. Subsequently, an assembly method for the synthesis of the multiarm robot mechanism is proposed, which can be formed by the connection of a multiarm robot mechanism with an operation object based on a parallel mechanism structure. The formed parallel mechanism can achieve a reconfigurable characteristic when different DKCs connect to the operation object. Using this method, two types of multiarm robot mechanisms with four DKCs that can switch operation modes to perform different tasks through autonomous combination and release operation is proposed. The obtained mechanisms have observable advantages when compared with the traditional mechanisms, including optimizing the occupied volume during transportation and using parallel mechanism theory to analyze the switching of operation modes.


2021 ◽  
Vol 13 (3) ◽  
pp. 530
Author(s):  
Junjun Yin ◽  
Jian Yang

Pseudo quad polarimetric (quad-pol) image reconstruction from the hybrid dual-pol (or compact polarimetric (CP)) synthetic aperture radar (SAR) imagery is a category of important techniques for radar polarimetric applications. There are three key aspects concerned in the literature for the reconstruction methods, i.e., the scattering symmetric assumption, the reconstruction model, and the solving approach of the unknowns. Since CP measurements depend on the CP mode configurations, different reconstruction procedures were designed when the transmit wave varies, which means the reconstruction procedures were not unified. In this study, we propose a unified reconstruction framework for the general CP mode, which is applicable to the mode with an arbitrary transmitted ellipse wave. The unified reconstruction procedure is based on the formalized CP descriptors. The general CP symmetric scattering model-based three-component decomposition method is also employed to fit the reconstruction model parameter. Finally, a least squares (LS) estimation method, which was proposed for the linear π/4 CP data, is extended for the arbitrary CP mode to estimate the solution of the system of non-linear equations. Validation is carried out based on polarimetric data sets from both RADARSAT-2 (C-band) and ALOS-2/PALSAR (L-band), to compare the performances of reconstruction models, methods, and CP modes.


Sign in / Sign up

Export Citation Format

Share Document