Application of Double Impact Oscillator in Forming

Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighborhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally.

Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


Author(s):  
Amit Banerjee ◽  
Issam Abu Mahfouz

The use of non-classical evolutionary optimization techniques such as genetic algorithms, differential evolution, swarm optimization and genetic programming to solve the inverse problem of parameter identification of dynamical systems leading to chaotic states has been gaining popularity in recent years. In this paper, three popular evolutionary algorithms — differential evolution, particle swarm optimization and the firefly algorithm are used for parameter identification of a clearance-coupled-impact oscillator system. The behavior of impacting systems is highly nonlinear exhibiting a myriad of harmonic, low order and high order sub-harmonic resonances, as well as chaotic vibrations. The time-history simulations of the single-degree-of-freedom impact oscillator were obtained by the Neumark-β numerical integration algorithm. The results are illustrated by bifurcation graphs, state space portraits and Poincare’ maps which gives valuable insights on the dynamics of the impact system. The parameter identification problem relates to finding one set of system parameters given a chaotic or periodic system response as a set of Poincaré points and a different but known set of system parameters. The three evolutionary algorithms are compared over a set of parameter identification problems. The algorithms are compared based on solution quality to evaluate the efficacy of using one algorithm over another.


2013 ◽  
Vol 210 ◽  
pp. 130-135
Author(s):  
Wojciech Jurczak ◽  
Bogdan Szturomski

An influence of depth of the pits resulting from exposure to corrosive medium on the initiation of stress corrosion cracking process of AW 7020M (Rm=430MPa) alloy has been presented in the paper. The samples were subjected to several weeks of exposure to the solution simulating seawater, which resulted in uniform surface corrosion with the pits of depth from 30 to 100 μm. These samples were then subjected to a tensile test to determine their new properties (after the exposure). The tests have shown that the initiation of neck and cracking spot do not always coincide with the location of pits. The aim of this study was to estimate the minimum depth of pitting under the assumed shape, resulting in the initiation of cracking during the tensile test, using numerical simulations with the CAE software. The paper presents simulation results for the samples made of AW-7020 alloy of 3.75 mm thickness.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zijun Wang ◽  
An Chen

At present, the feasibility of using self-purification mechanism to inhibit rumor spreading has been confirmed by studies from different perspectives. This paper improves the classical rumor spreading models with self-purification mechanism, analyzes the correlation between spreading threshold in the model and its self-purification level theoretically, and conducts numerical simulations to study the impact of the changes of model parameters on key indicators in the process of rumor spreading. The simulation results show that changes of model parameters, including self-purification level and forgetting rate, exert significant influences on rumor spreading exactly.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4733
Author(s):  
Ningjing Jiang ◽  
Shufan Wu ◽  
Yile Hu ◽  
Zhongcheng Mu ◽  
Xiaofeng Wu ◽  
...  

Currently, it appears that there is a lack of understanding related to the role of SSF, in the two-phase behavior of the deceleration history, which is an issue discussed recently in the impact dynamics field. This paper analytically and numerically focuses on the effect of SSF on the projectile deceleration characteristic of concrete-like targets. Firstly, the penetration process according to the two-phase feature of the projectile deceleration is revised, where analytical results indicate that the SSF has a phased feature corresponding to the two-phase behavior of the deceleration history. Furthermore, a series of numerical simulations are conducted to understand the role of SSF more clearly. Simulation results show a similar conclusion to the analyses of the two-phase penetration process; at the range below a certain critical striking velocity, adding friction can reproduce the experimental data; when exceeding the critical striking velocity, the simulated results without considering friction are closest to the experimental data. Hence, it could be gained that the role exchange between the SSF and the dynamic term contributes to the two-phase penetration behavior for concrete-like materials. This indicates that the sensitivity of SSF to the penetration process is one of the factors driving the two-phase feature.


Author(s):  
František Peterka ◽  
Tadashi Kotera ◽  
Stanislav Čipera

Abstract Chaotic motion of an intermittency type of the impact oscillator appears near segments of saddle-node stability boundaries of subharmonic motions with two different impacts in motion period, which is n multiple (n ≥ 3) of excitation period. Chaotic motion arises due to an additional impact, which interrupts the process of instability. It is proved and shown by numerical simulations of the system motion. More detail characteristics of the intermittency chaos are evaluated. Described phenomena present unusual example, when transition cross special segments of saddle-node stability boundaries of subharmonic impact motions is reversible.


2019 ◽  
Vol 14 (6) ◽  
Author(s):  
Runsen Zhang ◽  
Zhen Zhao ◽  
Xudong Zheng ◽  
Qi Wang

The drift motion of an asymmetric dimer bouncing on a harmonically vibrating plate is addressed in this paper. The direction of this motion is determined by the behavior of the dimer during a double impact. Namely, if the system parameters allow a sticking impact as a generic behavior, the dimer drifts in one direction, whereas if all impacts end in a reverse slip, the dimer drifts in the opposite direction. By this mechanism, the bifurcation coefficients dominating the drift direction are obtained and discussed. But strictly speaking, the drift direction does not change unless the reverse slipping displacement after a double impact is big enough. Thus, numerical simulations are carried out to find a more accurate threshold and check the rationality of theoretical results.


2020 ◽  
Author(s):  
Elena Pasternak ◽  
Arcady Dyskin

<p>Hydraulic fractures and the natural fractures in rock masses are closed by the in-situ compressive stress such that their opposite faces are in contact either with each other or with the proppant in hydraulic fractures or with gouge in the natural fractures. Subsequently, a pressure increase can produce negligible deformation in already closed fractures as compared to the deformation associated with the opening caused by sufficiently large tensile stress. This suggests a simple model of closed fracture as a bilinear spring with a certain stiffness in tension and a very high (potentially infinite) stiffness in compression. Therefore the oscillations of fractures can be reduced to the oscillations of a bilinear oscillator or impact oscillator [1] when the compressive stiffness considerably exceeds the tensile one. We use the simplest model of the impact oscillator with preload representing the action of the in-situ compressive stress. Based on this model, two sets of multiple resonances are identified and the reaction to impulsive load is determined. The harmonics of free oscillations are calculated. The knowledge of the first two harmonics is sufficient to recover the tensile stiffness and hence identify the geometric parameters of the fracture. The results of the research contribute to the development of the methods of fracture reconstruction and the hydraulic fracture monitoring.</p><ol><li>Dyskin, A.V., E. Pasternak and E. Pelinovsky, 2012. Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration 331(12) 2856-2873. ISBN/ISSN 0022-460X, 04/06/2012.</li> </ol><p><strong>Acknowledgements</strong>. The authors acknowledge support from the Australian Research Council through project DP190103260. AVD acknowledges the support from the School of Civil and Transportation, Faculty of Engineering, Beijing University of Civil Engineering and Architecture.</p>


Sign in / Sign up

Export Citation Format

Share Document