Analysis of Dynamic Couplings in Two-Stage Geared Systems

Author(s):  
J. P. Raclot ◽  
P. Velex

Abstract A modular model for the simulation of the dynamic behavior of multi-stage spur and helical gears is presented. It is mostly based on shaft finite elements combined with some specific gear elements which account for torsional-flexural-axial couplings, parametric and external excitations. Each tooth contact on theoretical base planes is assimilated to a line contact and discretized in accordance with the contact line evolutions when pinions and gears are rotating. A local stiffness and a normal deviation which represent gear tooth elasticity and tooth shape modifications or/and errors are associated with each cell of the time-dependent grid. Seeking particular stable solutions only, the equations of motion are linearized and solved by using a specific spectral method which has been adapted to parametrically excited systems submitted to broad band parametric and external excitations. Numerical simulations (dynamic transmission errors and displacements) have been performed for two different two-stage geared trains, i. e., a dual speed reducer (two pinion-gear pairs) and a dual mesh reverse idler (3 gears). The role and the definition of profile modifications (short/long reliefs), the contributions of pitch errors and the influence of the mesh relative orientation on the system dynamic behavior are examined. Finally, the nature and the intensity of the inter-mesh couplings in a double stage geared unit are discussed.

Author(s):  
H. M. Saxer-Felici ◽  
A. P. Saxer ◽  
F. Ginter ◽  
A. Inderbitzin ◽  
G. Gyarmathy

The structure and propagation of rotating stall cells in a single- and a two-stage subsonic axial compressor is addressed in this paper using computational and experimental analysis. Unsteady solutions of the 2-D inviscid compressible (Euler) equations of motion are presented for one operating point in the fully-developed rotating stall regime for both a single- and a two-stage compressor. The inviscid assumption is verified by comparing the single-stage 2-D in viscid/compressible solution with an equivalent 2-D viscous (Navier-Stokes) result for incompressible flow. The structure of the rotating stall cell is analyzed and compared for the single- and two-stage cases. The numerical solutions are validated against experimental data consisting of flow visualization and unsteady row-by-row static pressure measurements obtained in a four-stage water model of a subsonic compressor. The CFD solutions supply a link between the observed experimental features and provide additional information on the structure of the stall flow. Based on this study. supporting assumptions regarding the driving mechanisms for the propagation of fully-developed rotating stall cells and their structure are postulated. In methodical respect the results suggest that the inviscid model is able to reproduce the essentials of the flow physics associated with the propagation of fully-developed, full-span rotating stall in a subsonic axial compressor.


2021 ◽  
pp. 016555152199980
Author(s):  
Yuanyuan Lin ◽  
Chao Huang ◽  
Wei Yao ◽  
Yifei Shao

Attraction recommendation plays an important role in tourism, such as solving information overload problems and recommending proper attractions to users. Currently, most recommendation methods are dedicated to improving the accuracy of recommendations. However, recommendation methods only focusing on accuracy tend to recommend popular items that are often purchased by users, which results in a lack of diversity and low visibility of non-popular items. Hence, many studies have suggested the importance of recommendation diversity and proposed improved methods, but there is room for improvement. First, the definition of diversity for different items requires consideration for domain characteristics. Second, the existing algorithms for improving diversity sacrifice the accuracy of recommendations. Therefore, the article utilises the topic ‘features of attractions’ to define the calculation method of recommendation diversity. We developed a two-stage optimisation model to enhance recommendation diversity while maintaining the accuracy of recommendations. In the first stage, an optimisation model considering topic diversity is proposed to increase recommendation diversity and generate candidate attractions. In the second stage, we propose a minimisation misclassification cost optimisation model to balance recommendation diversity and accuracy. To assess the performance of the proposed method, experiments are conducted with real-world travel data. The results indicate that the proposed two-stage optimisation model can significantly improve the diversity and accuracy of recommendations.


2012 ◽  
Vol 28 (3) ◽  
pp. 513-522 ◽  
Author(s):  
H. M. Khanlo ◽  
M. Ghayour ◽  
S. Ziaei-Rad

AbstractThis study investigates the effects of disk position nonlinearities on the nonlinear dynamic behavior of a rotating flexible shaft-disk system. Displacement of the disk on the shaft causes certain nonlinear terms which appears in the equations of motion, which can in turn affect the dynamic behavior of the system. The system is modeled as a continuous shaft with a rigid disk in different locations. Also, the disk gyroscopic moment is considered. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed modes method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work are inclusive of time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The effect of disk nonlinearities is studied for some disk positions. The results confirm that when the disk is located at mid-span of the shaft, only the regular motion (period one) is observed. However, periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for situations in which the disk is located at places other than the middle of the shaft. The results show nonlinear effects are negligible in some cases.


2016 ◽  
Vol 33 (S1) ◽  
pp. S365-S365
Author(s):  
O. Pino ◽  
G. Guilera ◽  
E. Rojo ◽  
J. Gómez-Benito

ObjectiveThe aim this presentation is present the results of the preparatory studies were presented at an international consensus conference, a multi-stage, iterative, decision-making and consensus process that took place 12–14 May 2015 in Barcelona, Spain. At this consensus conference, schizophrenia experts from different countries worldwide and working in a broad range of professions decided which ICF categories should be included in the first version of the ICF Core Sets for schizophrenia.MethodFour preliminary studies intend to capture the researcher's perspective, the patient's perspective, the expert's perspective and the clinician's perspective, respectively, on the most relevant aspects of functioning of persons living with schizophrenia. The final definition of ICF Core Sets for schizophrenia have been determined by integrating the results of preliminary studies in a consensus conference with international expert.ResultThe experts included 97 categories in the Comprehensive ICF Core Set and 25 categories in the Brief ICF-CS. The specific categories of each ICF-CS are shown in this presentation. The Comprehensive ICF-CS can guide multidisciplinary assessments of functioning in persons with schizophrenia, and the brief version is ideal for use in both clinical and epidemiological research, since it includes a small and practical number of categories, but sufficiently wide for finding utility in clinical assessments.ConclusionICF-CS are being designed with the goal of providing useful standards for research, clinical practice and teaching, and it will stimulate research and will improve understanding of functioning, health and environmental factors in schizophrenia.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2018 ◽  
Vol 185 ◽  
pp. 00002
Author(s):  
Shih-Hsien Lin ◽  
Un-Chin Chai ◽  
Gow-Yi Tzou ◽  
Dyi-Cheng Chen

Three are generalized simulation optimizations considering the forging force, the die stress, and the dual-goals in two-stage forging of micro/meso copper fastener. Constant shear friction between the dies and workpiece is assumed to perform multi-stage cold forging forming simulation analysis, and the Taguchi method with the finite element simulation has been used for mold-and-dies parameters design simulation optimizations considering the forging force, die stress, and dual-goals. The die stress optimization is used to explore the effects on effective stress, effective strain, velocity field, die stress, forging force, and shape of product. The influence rank to forging process of micro/meso copper fastener for three optimizations can be determined, and the optimal parameters assembly consider die stress can be obtained in this study. It is noted that the punch design innovation can reduce the forging force and die stress.


1989 ◽  
Vol 111 (4) ◽  
pp. 626-629
Author(s):  
W. Ying ◽  
R. L. Huston

In this paper the dynamic behavior of beam-like mechanism systems is investigated. The elastic beam is modeled by finite rigid segments connected by joint springs and dampers. The equations of motion are derived using Kane’s equations. The nonlinear terms are linearized by first order perturbation about a system balanced configuration state leading to geometric stiffness matrices. A simple numerical example of a rotating cantilever beam is presented.


Author(s):  
T. N. Shiau ◽  
C. R. Wang ◽  
D. S. Liu ◽  
W. C. Hsu ◽  
T. H. Young

An investigation is carried out the analysis of nonlinear dynamic behavior on effects of rub-impact caused by oil-rupture in a multi-shafts turbine system with a squeeze film damper. Main components of a multi-shafts turbine system includes an outer shaft, an inner shaft, an impeller shaft, ball bearings and a squeeze film damper. In the squeeze film damper, oil forces can be derived from the short bearing approximation and cavitated film assumption. The system equations of motion are formulated by the global assumed mode method (GAMM) and Lagrange’s approach. The nonlinear behavior of a multi-shafts turbine system which includes the trajectories in time domain, frequency spectra, Poincaré maps, and bifurcation diagrams are investigated. Numerical results show that large vibration amplitude is observed in steady state at rotating speed ratio adjacent to the first natural frequency when there is no squeeze film damper. The nonlinear dynamic behavior of a multi-shafts turbine system goes in its way into aperiodic motion due to oil-rupture and it is unlike the usual way (1T = >2T = >4T = >8T etc) as compared to one shaft rotor system. The typical routes of bifurcation to aperiodic motion are observed in a multi-shafts turbine rotor system and they suddenly turn into aperiodic motion from the periodic motion without any transition. Consequently, the increasing of geometric or oil parameters such as clearance or lubricant viscosity will improve the performance of SFD bearing.


2021 ◽  
pp. 1-17
Author(s):  
Luca Bonaiti ◽  
Ahmed Bayoumi Mahmoud Bayoumi ◽  
Franco Concli ◽  
Francesco Rosa ◽  
Carlo Gorla

Abstract Gear tooth breakage due to bending fatigue is one of the most dangerous failure modes of gears. Therefore, the precise definition of tooth bending strength is of utmost importance in gear design. Single Tooth Bending Fatigue (STBF) tests are usually used to study this failure mode, since they allow to test gears, realized and finished with the actual industrial processes. Nevertheless, STBF tests do not reproduce exactly the loading conditions of meshing gears. The load is applied in a pre-determined position, while in meshing gears it moves along the active flank; all the teeth can be tested and have the same importance, while the actual strength of a meshing gear, practically, is strongly influenced by the strength of the weakest tooth of the gear. These differences have to be (and obviously are) taken into account when using the results of STBF tests to design gear sets. The aim of this paper is to investigate in detail the first aspect, i.e. the role of the differences between two tooth root stress histories. In particular, this paper presents a methodology based on high-cycle multi-axial fatigue criteria in order to translate STBF test data to the real working condition; residual stresses are also taken into account


Sign in / Sign up

Export Citation Format

Share Document