A Flexible Rotor on Flexible Bearing Supports: Part II — Unbalance Response

Author(s):  
José A. Vázquez ◽  
Lloyd E. Barrett ◽  
Ronald D. Flack

Abstract An experimental study of the effects of bearing support flexibility on rotor unbalance response is presented. A flexible rotor supported by fluid film bearings on flexible supports was used with fifteen support configurations. The horizontal support stiffness was varied systematically while the vertical stiffness was kept constant. The support characteristics were determined experimentally by measuring the frequency response functions of the support structure at the bearing locations. These frequency response functions were used to calculate polynomial transfer functions that represented the support structure. The second critical speed of the rotor varied from 3690 rpm to 5200 rpm, depending on the support configuration. The predicted first critical speeds agree with the experimental data within −1.7%. The predicted second critical speeds agree with the experimental data within 3.4%. Predictions for the rotor on rigid supports are included for comparison.

2000 ◽  
Vol 123 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Jose´ A. Va´zquez ◽  
Lloyd E. Barrett ◽  
Ronald D. Flack

An experimental study of the effects of bearing support flexibility on rotor stability and unbalance response is presented. A flexible rotor supported by fluid film bearings on flexible supports was used with fifteen support configurations. The horizontal support stiffness was varied systematically while the vertical stiffness was kept constant. The support characteristics were determined experimentally by measuring the frequency response functions of the support structure at the bearing locations. These frequency response functions were used to calculate polynomial transfer functions that represented the support structure. Stability predictions were compared with measured stability thresholds. The predicted stability thresholds agree with the experimental data within a confidence bound for the logarithmic decrement of ±0.01. For unbalance response, the second critical speed of the rotor varied from 3690 rpm to 5200 rpm, depending on the support configuration. The predicted first critical speeds agree with the experimental data within −1.7 percent. The predicted second critical speeds agree with the experimental data within 3.4 percent. Predictions for the rotor on rigid supports are included for comparison.


Author(s):  
José A. Vázquez ◽  
Lloyd E. Barrett ◽  
Ronald D. Flack

Abstract An experimental study of the effects of bearing support flexibility on rotor stability is presented. A flexible roto supported by fluid film bearings on flexible supports was used with fifteen support configurations. The horizontal suppor stiffness was varied systematically while the vertical stiffness was kept constant. The support charactristics were determined experimentally by measuring the frequency response functions of the support structure at the bearing locations. These frequency response functions were used to calculate polynomial transfer functions that represented the support structure. Stability predictions were compared with measured stability thresholds. The predicted stability thresholds agree with the experimental data within a confidence bound for the logarithmic decrement of ±0.01. Predictions for the rotor on rigid supports are included for comparison.


2009 ◽  
Vol 131 (1) ◽  
Author(s):  
Yun-Ho Seo ◽  
Chong-Won Lee ◽  
K. C. Park

A method is proposed for identifying the location of an open transverse crack in flexible rotor systems by modeling the crack as a localized element with rotating asymmetry. It exploits the strong correlations between the modal constants of the reverse directional frequency response functions (r-dFRFs) and the degree and location of asymmetry. A map of the modal constants of the r-dFRFs for all elements is constructed to identify the location of crack by comparing the identified modal constants to those of the reference map. This paper also addresses practical issues associated with measurement noises and limited number of sensors. The proposed crack identification method is finally applied to a flexible rotor system with an open transverse crack in order to demonstrate the identification procedure for detection of the crack location.


1996 ◽  
Vol 118 (1) ◽  
pp. 95-99 ◽  
Author(s):  
J. Ling ◽  
Y. Cao

This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in this paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.


2002 ◽  
Vol 125 (1) ◽  
pp. 149-155 ◽  
Author(s):  
J. A. Va´zquez ◽  
E. H. Maslen ◽  
H.-J. Ahn ◽  
D.-C. Han

The experimental identification of a long flexible rotor with three magnetic bearing journals is presented. Frequency response functions are measured between the magnetic bearing journals and the sensor locations while the rotor is suspended horizontally with piano wire. These frequency response functions are compared with the responses of a rotor model and a reconciliation process is used to reduce the discrepancies between the model and the measured data. In this identification, the wire and the fit of the magnetic bearing journals are identified as the sources of model error. As a result of the reconciliation process, equivalent dynamic stiffness are calculated for the piano wire and the fit of the magnetic bearing journals. Several significant numeral issues that were encountered during the process are discussed and solutions to some of these problems are presented.


Author(s):  
W. Schünemann ◽  
R. Schelenz ◽  
G. Jacobs ◽  
W. Vocaet

AbstractThe aim of a transfer path analysis (TPA) is to view the transmission of vibrations in a mechanical system from the point of excitation over interface points to a reference point. For that matter, the Frequency Response Functions (FRF) of a system or the Transmissibility Matrix is determined and examined in conjunction with the interface forces at the transfer path. This paper will cover the application of an operational TPA for a wind turbine model. In doing so the path contribution of relevant transfer paths are made visible and can be optimized individually.


1998 ◽  
Vol 120 (2) ◽  
pp. 509-516 ◽  
Author(s):  
J. A. Morgan ◽  
C. Pierre ◽  
G. M. Hulbert

This paper demonstrates how to calculate Craig-Bampton component mode synthesis matrices from measured frequency response functions. The procedure is based on a modified residual flexibility method, from which the Craig-Bampton CMS matrices are recovered, as presented in the companion paper, Part I (Morgan et al., 1998). A system of two coupled beams is analyzed using the experimentally-based method. The individual beams’ CMS matrices are calculated from measured frequency response functions. Then, the two beams are analytically coupled together using the test-derived matrices. Good agreement is obtained between the coupled system and the measured results.


Author(s):  
S. Y. Chen ◽  
M. S. Ju ◽  
Y. G. Tsuei

Abstract A frequency-domain technique to extract the normal mode from the measurement data for highly coupled structures is developed. The relation between the complex frequency response functions and the normal frequency response functions is derived. An algorithm is developed to calculate the normal modes from the complex frequency response functions. In this algorithm, only the magnitude and phase data at the undamped natural frequencies are utilized to extract the normal mode shapes. In addition, the developed technique is independent of the damping types. It is only dependent on the model of analysis. Two experimental examples are employed to illustrate the applicability of the technique. The effects due to different measurement locations are addressed. The results indicate that this technique can successfully extract the normal modes from the noisy frequency response functions of a highly coupled incomplete system.


Sign in / Sign up

Export Citation Format

Share Document