Improving Traditional Balancing Methods for High-Speed Rotors

1996 ◽  
Vol 118 (1) ◽  
pp. 95-99 ◽  
Author(s):  
J. Ling ◽  
Y. Cao

This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in this paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.

2018 ◽  
Vol 22 (4) ◽  
pp. 935-947 ◽  
Author(s):  
Qianhui Pu ◽  
Yu Hong ◽  
Liangjun Chen ◽  
Shili Yang ◽  
Xikun Xu

This article evaluates the use of experimental frequency response functions for damage detection and quantification of a concrete beam with the help of model updating theory. The approach is formulated as an optimization problem that intends to adjust the analytical frequency response functions from a benchmark finite element model to match with the experimental frequency response functions from the damaged structure. Neither model expansion nor reduction is needed because the individual analytical frequency response function formulation is derived. Unlike the commonly used approaches that assume zero damping or viscous damping for simplicity, a more realistic hysteretic damping model is considered in the analytical frequency response function formulation. The accuracy and anti-noise ability of the proposed approach are first verified by the numerical simulations. Next, a laboratory reinforced concrete beam with different levels of damage is utilized to investigate the applicability in an actual test. The results show successful damage quantification and damping updating of the beam by matching the analytical frequency response functions with the experimental frequency response functions in each damage scenario.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


2014 ◽  
Vol 612 ◽  
pp. 29-34
Author(s):  
Jakeer Hussain Shaik ◽  
J. Srinivas

Dynamic behaviour of spindle system influences chatter stability of machine tool considerably. Self-excited vibrations of the tool results in unstable cutting process which leads to the chatter on the work surface and it reduces the productivity. In this paper, a system of coupled spindle bearing system is employed by considering the angular contact ball bearing forces on stability of machining. Using Timoshenko beam element formulation, the spindle unit is analyzed by including the gyroscopic and centrifugal terms. Frequency response functions at the tool-tip are obtained from the dynamic spindle model. In the second phase, solid model of the system is developed and its dynamic response is obtained from three dimensional finite element analysis. The works on analysis of the stability of milling processes focus on calculating the stability boundary of the machining parameters based on the dynamic models characterizing the milling processes. The stability lobe diagrams are generated from frequency response functions (FRF’s) lead to an stability limit prediction for the system at high speed ranges.


2017 ◽  
Vol 23 (11) ◽  
pp. 1444-1455
Author(s):  
Walter D’Ambrogio ◽  
Annalisa Fregolent

Flexible structural components can be attached to the rest of the structure using different types of joints. For instance, this is the case of solar panels or array antennas for space applications that are joined to the body of the satellite. To predict the dynamic behaviour of such structures under different boundary conditions, such as additional constraints or appended structures, it is possible to start from the frequency response functions in free-free conditions. In this situation, any structure exhibits rigid body modes at zero frequency. To experimentally simulate free-free boundary conditions, flexible supports such as soft springs are typically used: with such arrangement, rigid body modes occur at low non-zero frequencies. Since a flexible structure exhibits the first flexible modes at very low frequencies, rigid body modes and flexible modes become coupled: therefore, experimental frequency response function measurements provide incorrect information about the low frequency dynamics of the free-free structure. To overcome this problem, substructure decoupling can be used, that allows us to identify the dynamics of a substructure (i.e. the free-free structure) after measuring the frequency response functions on the complete structure (i.e. the structure plus the supports) and from a dynamic model of the residual substructure (i.e. the supporting structure). Subsequently, the effect of additional boundary conditions can be predicted using a frequency response function condensation technique. The procedure is tested on a reduced scale model of a space solar panel.


2000 ◽  
Vol 123 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Jose´ A. Va´zquez ◽  
Lloyd E. Barrett ◽  
Ronald D. Flack

An experimental study of the effects of bearing support flexibility on rotor stability and unbalance response is presented. A flexible rotor supported by fluid film bearings on flexible supports was used with fifteen support configurations. The horizontal support stiffness was varied systematically while the vertical stiffness was kept constant. The support characteristics were determined experimentally by measuring the frequency response functions of the support structure at the bearing locations. These frequency response functions were used to calculate polynomial transfer functions that represented the support structure. Stability predictions were compared with measured stability thresholds. The predicted stability thresholds agree with the experimental data within a confidence bound for the logarithmic decrement of ±0.01. For unbalance response, the second critical speed of the rotor varied from 3690 rpm to 5200 rpm, depending on the support configuration. The predicted first critical speeds agree with the experimental data within −1.7 percent. The predicted second critical speeds agree with the experimental data within 3.4 percent. Predictions for the rotor on rigid supports are included for comparison.


2022 ◽  
Vol 105 (1) ◽  
pp. 003685042110644
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Muhammad Ahsan ◽  
Syed A Zilqurnain Naqvi ◽  
Asif Israr

Low-severity multiple damage detection relies on sensing minute deviations in the vibrational or dynamical characteristics of the structure. The problem becomes complicated when the reference vibrational profile of the healthy structure and corresponding input excitation, is unavailable as frequently experienced in real-life scenarios. Detection methods that require neither undamaged vibrational profile (baseline-free) nor excitation information (output-only) constitute state-of-art in structural health monitoring. Unfortunately, their efficacy is ultimately limited by non-ideal input excitation masking crucial attributes of system response such as resonant frequency peaks beyond first (few) natural frequency(ies) which can better resolve the issue of multiple damage detection. This study presents an improved frequency response function curvature method which is both baseline-free and output-only. It employs the cepstrum technique to eliminate [Formula: see text] decay of higher resonance peaks caused by the temporal spread of real impulse excitation. Long-pass liftering screens out the bulk of low-frequency sensor noise along with the excitation. With more visible resonant peaks, the cepstrum purified frequency response functions (regenerated frequency response functions) register finer deviation from an estimated baseline frequency response function and yield an accurate damage index profile. The simulation and experimental results on the beam show that the proposed method can successfully locate multiple damages of severity as low as 5%.


2001 ◽  
Vol 124 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Shuangbiao Liu ◽  
Qian Wang

The knowledge of contact stresses is critical to the design of a tribological element. It is necessary to keep improving contact models and develop efficient numerical methods for contact studies, particularly for the analysis involving coated bodies with rough surfaces. The fast Fourier Transform technique is likely to play an important role in contact analyses. It has been shown that the accuracy in an algorithm with the fast Fourier Transform is closely related to the convolution theorem employed. The algorithm of the discrete convolution and fast Fourier Transform, named the DC-FFT algorithm includes two routes of problem solving: DC-FFT/Influence coefficients/Green’s function for the cases with known Green’s functions and DC-FFT/Influence coefficient/conversion, if frequency response functions are known. This paper explores the method for the accurate conversion for influence coefficients from frequency response functions, further improves the DC-FFT algorithm, and applies this algorithm to analyze the contact stresses in an elastic body under pressure and shear tractions for high efficiency and accuracy. A set of general formulas of the frequency response function for the elastic field is derived and verified. Application examples are presented and discussed.


Author(s):  
José A. Vázquez ◽  
Lloyd E. Barrett ◽  
Ronald D. Flack

Abstract An experimental study of the effects of bearing support flexibility on rotor unbalance response is presented. A flexible rotor supported by fluid film bearings on flexible supports was used with fifteen support configurations. The horizontal support stiffness was varied systematically while the vertical stiffness was kept constant. The support characteristics were determined experimentally by measuring the frequency response functions of the support structure at the bearing locations. These frequency response functions were used to calculate polynomial transfer functions that represented the support structure. The second critical speed of the rotor varied from 3690 rpm to 5200 rpm, depending on the support configuration. The predicted first critical speeds agree with the experimental data within −1.7%. The predicted second critical speeds agree with the experimental data within 3.4%. Predictions for the rotor on rigid supports are included for comparison.


Sign in / Sign up

Export Citation Format

Share Document