Time Variate Comparison of In Situ and In Vitro Monophasic Action Potential Recordings

Author(s):  
Megan M. Schmidt ◽  
Paul A. Iaizzo

Monophasic action potentials (MAPs) have long been used as a means to study the focal electrical activity of the myocardium. [1, 2] Upon the application of adequate contact force, the signals provide important insights into focal depolarization and repolarization, activation timing, and focal arrhythmic behaviors. [3–6] Within our laboratory we have developed an isolated physiologic, four-chamber working, large mammalian heart model (the Visible Heart® methodology) to study cardiac devices and their interactions with the myocardium. [7] Through the use of a modified Krebs-Henseleit buffer, we can uniquely visualize the device-tissue interface: in this study, the placement of catheters. The purpose of this study was two-fold. First, we demonstrated the long term stability of MAP recordings in an in situ swine model. Second, we showed the relationship between MAPs recorded from in vitro and in situ preparations of each specimen.

1991 ◽  
Vol 65 (03) ◽  
pp. 263-267 ◽  
Author(s):  
A M H P van den Besselaar ◽  
R M Bertina

SummaryIn a collaborative trial of eleven laboratories which was performed mainly within the framework of the European Community Bureau of Reference (BCR), a second reference material for thromboplastin, rabbit, plain, was calibrated against its predecessor RBT/79. This second reference material (coded CRM 149R) has a mean International Sensitivity Index (ISI) of 1.343 with a standard error of the mean of 0.035. The standard error of the ISI was determined by combination of the standard errors of the ISI of RBT/79 and the slope of the calibration line in this trial.The BCR reference material for thromboplastin, human, plain (coded BCT/099) was also included in this trial for assessment of the long-term stability of the relationship with RBT/79. The results indicated that this relationship has not changed over a period of 8 years. The interlaboratory variation of the slope of the relationship between CRM 149R and RBT/79 was significantly lower than the variation of the slope of the relationship between BCT/099 and RBT/79. In addition to the manual technique, a semi-automatic coagulometer according to Schnitger & Gross was used to determine prothrombin times with CRM 149R. The mean ISI of CRM 149R was not affected by replacement of the manual technique by this particular coagulometer.Two lyophilized plasmas were included in this trial. The mean slope of relationship between RBT/79 and CRM 149R based on the two lyophilized plasmas was the same as the corresponding slope based on fresh plasmas. Tlowever, the mean slope of relationship between RBT/79 and BCT/099 based on the two lyophilized plasmas was 4.9% higher than the mean slope based on fresh plasmas. Thus, the use of these lyophilized plasmas induced a small but significant bias in the slope of relationship between these thromboplastins of different species.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


2021 ◽  
Vol 336 ◽  
pp. 457-468
Author(s):  
Charlotte Molinier ◽  
Marina Picot-Groz ◽  
Océane Malval ◽  
Sophie Le Lamer-Déchamps ◽  
Joël Richard ◽  
...  

1996 ◽  
Vol 44 (2) ◽  
pp. 103-110 ◽  
Author(s):  
J.W. Cone ◽  
A.H. Van Gelder ◽  
A.M. Van Vuuren

The amount of rumen fermentable organic matter (FOM) can be calculated using tables, taking into account the amount of digestible organic matter, the content of fat and fermentation products, and the amount of starch and protein escaping rumen fermentation, or FOM can be calculated using in situ incubations. An in vitro method is described to predict FOM using amylase and other carbohydrate degrading enzymes. FOM estimated by the enzymic method showed a moderate correlation (Rsuperscript 2 = 0.71) with FOM estimated by the in situ method. The relationship could be improved by separating the high crude fibre samples (Rsuperscript 2 = 0.88) from the other samples (Rsuperscript 2 = 0.77). Because degradation rates with the enzymic method were high compared with the assumed rumen passage rates, it proved that FOM could be predicted with a similar accuracy (Rsuperscript 2 = 0.76 - 0.80) by the undegraded fraction after 24 h.


Development ◽  
1975 ◽  
Vol 34 (3) ◽  
pp. 575-588
Author(s):  
R. J. Cole ◽  
T. Regan ◽  
S. L. White ◽  
E. M. Cheek

Levels of haem synthesis achieved by foetal liver erythroblasts responding to erythropoietin in vitro are similar in dissociated cell cultures and in cultures of organized tissues. Erythroid colony-forming cells reach maximum numbers on the sixteenth day of gestation. Their presence in foetal liver is associated with the period of most rapid production of erythrocytes, and with in vitro sensitivity to erythropoietin measured as enhanced haem synthesis. It is concluded that at least a proportion of erythroid colony-forming cells in the foetal liver are dependent on erythropoietin in situ and that these cells are separated from the earliest recognizable pro-erythroblast by 1–2 cell divisions. Populations of granulocyte-macrophage colony-forming cells change independently of erythroid colony-forming cell numbers.


2007 ◽  
Vol 2007 ◽  
pp. 210-210
Author(s):  
H. Paya ◽  
A. Taghizadeh ◽  
H. Janmohamadi ◽  
G.A Moghadam

Ration formulation systems require information on nutrient requirements of the animal and reliable values for rumen degradable and undegradable fractions of feed ingredients. The in situ nylon-bag technique is widely used to characterize the disappearance of feeds from the rumen (Woods et al., 2002). The objective of this study was determining of relationship between in vitro and in situ dry matter disappearance.


2020 ◽  
Vol 58 (3) ◽  
pp. 368-374 ◽  
Author(s):  
Uliana Danilenko ◽  
Hubert W. Vesper ◽  
Gary L. Myers ◽  
Patric A. Clapshaw ◽  
Johanna E. Camara ◽  
...  

AbstractManufacturers of in vitro diagnostic medical devices, clinical laboratories, research laboratories and calibration laboratories require commutable reference materials that can be used in the calibration hierarchies of medical laboratory measurement procedures used for human specimens to establish metrological traceability to higher order reference systems. Commutable materials are also useful in external quality assessment surveys. In order to achieve these goals, matrix-based reference materials with long-term stability, appropriate measurand concentrations and commutability with individual human specimens are required. The Clinical and Laboratory Standards Institute (CLSI) guideline C37-A (now archived) provided guidance to prepare commutable pooled serum reference materials for use in the calibration hierarchies of cholesterol measurement procedures. Experience using the C37-A guideline has identified a number of technical enhancements as well as applications to measurands other than cholesterol. This experience is incorporated into this updated protocol to ensure the procedure will continue to meet the needs of the medical laboratory. The updated protocol describes a procedure for preparing frozen human serum units or pools with minimal matrix alterations that are likely to be commutable with individual human serum samples. The protocol provides step-by-step guidance for the planning phase, collection of individual serum units, processing the units, qualifying the units for use in a pool and frozen storage of aliquots of pooled sera to manufacture frozen serum pools. Guidance on how to perform quality control of the final product and suggestions on documentation are also provided.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Nils Kristian Prenzler ◽  
Eugen Kludt ◽  
Thomas Giere ◽  
Rolf Salcher ◽  
Thomas Lenarz ◽  
...  

Objectives/Hypothesis. Comparing long term stability of the Middle Ear Transducers (MET) of the 1st generation T1 (Otologics LLC) with the current generation T2 (Cochlear Ltd.) in all our clinical cases with standard incus coupling. Study Design. Retrospective chart review. Methods. 52 ears implanted with a MET device between 2008 and 2016 were analyzed retrospectively. All patients suffered from sensorineural hearing loss and the actuator was coupled to the body of the incus (standard coupling). 23 ears were implanted with the transducer T1 (Otologics LLC) between 2008 and 2011 and 29 ears were implanted with the current transducer T2 since 2011 (Otologics LLC/Cochlear Ltd.). Latest available in situ and bone conduction (BC) thresholds were exploited for a follow-up period of up to 7 years after first fitting. Long term stability of coupling and actuator performance was evaluated by tracking differences between in situ and BC thresholds. Results. In the T1 group, 9 out of 23 implants were still used by the patients at their last follow-up visit (average observation time 3.7 yrs.; min 1.0 yrs., max 7.4 yrs.). In 9 patients a technical failure identified by a decrease of in situ threshold of more than 15 dB compared to BC thresholds [Δ (in situ – BC)] lead to non-usage of the implant and 7 explantations. Five other explantations occurred due to medical reasons such as BC threshold decrease, infection, or insufficient speech intelligibility with the device. In the T2 group, 23 out of 29 implants were still used at the most current follow-up visit (average observation time 3.3 yrs.; min 1.0 yrs., max 4.8 yrs.). No technical failures were observed up to more than 4 years after implantation. Five T2 patients discontinued using the device due to insufficient benefit; two of these patients were explanted. One patient had to be explanted before the activation of the device due to disorders of wound healing. Nevertheless, a small but significant decrease of hearing loss corrected coupling efficiency [Δ (in situ – BC)] was seen in the T2 group. Conclusions. In contrast to the T1 transducers of the earlier generation of MET systems where technical failures occurred frequently, no technical failures were detected after 29 implantations with the current T2 transducers. However, a small but significant decline of transmission efficiency was observable even in the T2 implanted group.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5350
Author(s):  
Niklas Graf ◽  
Nicoleta Ilie

The addition of RAFT (reversible addition-fragmentation chain transfer) agents to the matrix formulation of a bulk-fill resin composite can significantly decrease the required curing time down to a minimum of 3 s. Evaluating the long term-stability of this resin composite in relation to varied curing conditions in an in-vitro environment was this study’s goal. Specimens were produced according to either an ISO or one of two clinical curing protocols and underwent a maximum of three successive aging procedures. After each one of the aging procedures, 30 specimens for each curing condition were extracted for a three-point bending test. Fragments were then stereo-microscopically characterized according to their fracture mechanism. Weibull analysis was used to quantify the reliability of each aging and curing combination. Selected fragments (n = 12) underwent further testing via depth-sensing indentation. Mechanical values for either standardized or clinical curing were mostly comparable. However, changes in fracture mechanism and Weibull modulus were observed after each aging procedure. The final procedure exposed significant differences in the mechanical values due to curing conditions. Curing conditions with increased radiant exposure seemingly result in a higher crosslink in the polymer-matrix, thus increasing resistance to aging. Yet, the clinical curing conditions still resulted in acceptable mechanical values, proving the effectiveness of RAFT-polymerization.


Sign in / Sign up

Export Citation Format

Share Document