Performance Analysis of Fault Tolerant Control Systems Including Time Delay

Author(s):  
Javad Mohammadpour ◽  
Karolos M. Grigoriadis

The brief instability concept in Linear Parameter Varying (LPV) systems allows the linear system to be unstable for some values of the LPV parameters so that instability occurs only for a short period of time. The present paper takes advantage of an extension of the notion of the brief instability to the LPV systems with time-delay in their dynamics to examine the performance degradation in Fault Tolerant Control (FTC) systems in the presence of false identification of the fault signals. The paper provides tools for the stability and performance analysis of such systems, where performance is evaluated in terms of induced L2-gain. The results presented in the paper demonstrate that stability and performance can be evaluated by examining the feasibility of a parameterized set of Linear Matrix Inequalities (LMIs). The paper provides the analysis conditions to guarantee the asymptotic stability and H∞ performance for FTC systems, in which instability, due to the false identification of the fault signals, is allowed to take place for a short period of time. A numerical example is presented to illustrate the qualifications of the proposed analysis and synthesis conditions for treating brief instability in the delayed FTC systems.

Author(s):  
Mickael Rodrigues ◽  
Didier Theilliol ◽  
Samir Aberkane ◽  
Dominique Sauter

Fault Tolerant Control Design For Polytopic LPV SystemsThis paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Huaming Qian ◽  
Yu Peng ◽  
Mei Cui

This study focuses on the design of the robust fault-tolerant control (FTC) system based on adaptive observer for uncertain linear time invariant (LTI) systems. In order to improve robustness, rapidity, and accuracy of traditional fault estimation algorithm, an adaptive fault estimation algorithm (AFEA) using an augmented observer is presented. By utilizing a new fault estimator model, an improved AFEA based on linear matrix inequality (LMI) technique is proposed to increase the performance. Furthermore, an observer-based state feedback fault-tolerant control strategy is designed, which guarantees the stability and performance of the faulty system. Moreover, the adaptive observer and the fault-tolerant controller are designed separately, whose performance can be considered, respectively. Finally, simulation results of an aircraft application are presented to illustrate the effectiveness of the proposed design methods.


2012 ◽  
Vol 532-533 ◽  
pp. 521-526
Author(s):  
De Gong Zhao ◽  
Yue Chao Ma

The problem of robust fault-tolerant control for the uncertain time-delay system with state and control delays is studied.The considered system has sensor or actuator failures.Based on Lyapunov stability theory and linear matrix inequality(LMI),a method of robust fault-tolerant against sensor or actuator failures for uncertain system was proposed via memoryless feedback control law.The sufficient for the closed-loop system possessing integrity against sensor or actuator failures are given.At the same time,the controller design method is the linear matrix inequality(LMI).Finally,the numerical example and simulations demonstrate the validity of the proposed method.


2022 ◽  
Vol 12 (2) ◽  
pp. 684
Author(s):  
Abdelaziz Abboudi ◽  
Sofiane Bououden ◽  
Mohammed Chadli ◽  
Ilyes Boulkaibet ◽  
Bilel Neji

In this paper, an observer-based robust fault-tolerant predictive control (ORFTPC) strategy is proposed for Linear Parameter-Varying (LPV) systems subject to input constraints and sensor failures. The main objective of this work is to establish a real observer based on a virtual observer to be used to estimate both states and sensor failures of the system. The proposed virtual observer is employed to improve the observation precision and reduce the impacts of the sensor faults and the external disturbances in the LPV systems. In addition, a real observer is proposed to overcome the virtual observer margins and to ensure that all states and sensor faults of the system are properly estimated, without the need for any fault isolation modules. The proposed solution demonstrates that, using both observers, a robust fault-tolerant predictive control is established via the Lyapunov function. Moreover, sufficient stability conditions are derived using the Lyapunov approach for the convergence of the proposed robust controller. Furthermore, the proposed approach simultaneously computes the gains of the real observer and the controller from a linear matrix inequality (LMI), which is deduced from the estimation errors. Finally, the performance of the proposed approach is investigated by a simulation example of a quarter-vehicle model, and the simulation results under a sensor fault illustrate the robustness and performance of the proposed method.


Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.


2018 ◽  
Vol 22 (2) ◽  
pp. 788-802
Author(s):  
Ledi Zhang ◽  
Shousheng Xie ◽  
Yu Zhang ◽  
Litong Ren ◽  
Bin Zhou ◽  
...  

2017 ◽  
Vol 40 (10) ◽  
pp. 2991-2998
Author(s):  
Quanchao Dong ◽  
Hongyan Yang

This paper presents a finite frequency-based active fault tolerant control approach for the compensation of unknown failures in linear time-delay plants. An integration of fault detection filter based on observer technology and [Formula: see text] controller in residual feedback form is considered in the active fault tolerant control system. Different from the traditional schemes, exact fault estimation is not necessary in the proposed active fault tolerant control. To achieve the desired system performance when a fault occurs, the residual is directly embedded in the control loop as a feedback term to compensate the influence of fault. By employing the Generalized Kalman–Yakubovich–Popov lemma, we derive the sufficient conditions of the existence of such an active fault tolerant control plant, and iterative algorithms are applied to obtain the solutions to the fault detection filter and controller parameter matrices. Finally, simulation results are proposed to demonstrate the effectiveness of the developed scheme.


Sign in / Sign up

Export Citation Format

Share Document