Development of Control System by Nonlinear Compensation Using Digital Acceleration Control

Author(s):  
Takanori Emaru ◽  
Kazuo Imagawa ◽  
Yohei Hoshino ◽  
Yukinori Kobayashi

Proportional-Integral-Derivative (PID) control has been most commonly used to operate mechanical systems. In PID control, however, there are limits to the accuracy of the resulting movement because of the influence of gravity, friction, and interaction of joints. We have proposed a digital acceleration control (DAC) that is robust over these modeling errors. One of the most practicable advantages of DAC is robustness against modeling errors. However, it does not always work effectively. If there are modeling errors in the inertia term of the model, the DAC controller cannot control a mechanical system properly. Generally an inertia term is easily modeled in advance, but it has a possibility to change. Therefore, we propose an online estimation method of an inertia term by using a system identification method. By using the proposed method, the robustness of DAC is considerably improved. This paper shows the simulation results of the proposed method using 2-link manipulator.

2009 ◽  
Vol 21 (5) ◽  
pp. 590-596 ◽  
Author(s):  
Takanori Emaru ◽  
◽  
Kazuo Imagawa ◽  
Yohei Hoshino ◽  
Yukinori Kobayashi

Proportional-integral-derivative (PID) control commonly used to operate mechanical systems has limited performance accuracy due to the influence of gravity, friction, and joint interaction caused by modeling error. Digital acceleration control is robust against modeling errors and superior to PID control, but the need for positioning, velocity, and acceleration knowledge constrains the development of digital acceleration control. To overcome this limitation, this report introduces the system which estimates the smoothed and differential values using sliding mode system (ESDS). Using ESDS enables digital acceleration control without increasing the number of sensors over that used in PID control. This paper focuses on the influence of gravity because digital acceleration control can, in principle, cancel its influence. This controls mechanical systems appropriately under attitude variations. Results of proposed control are demonstrated using 1- and 2-link manipulators.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2013 ◽  
Vol 315 ◽  
pp. 616-620 ◽  
Author(s):  
Mona Tahmasebi ◽  
Roslan Abdul Rahman ◽  
Musa Mailah ◽  
Mohammad Gohari

Distribution pattern of spray boom in fields is affected by several parameters which one of the important reasons is horizontal and vertical vibrations because of unevenness surfaces. Spray boom movements lead to decrease of spread efficiency and crop yield. Generally, active suspension is employed to control and attenuate the vibration of sprayer booms because these suspensions reduce the high frequency vibration of spray booms thanks to irregularities soil. In this research, a proportional-integral-derivative controller with active force control is used to remove undesired rolling of spray boom. Simulation results depict that the proposed scheme is more effective and accurate than PID control only scheme. The AFC based scheme shows the robustness and accuracy compared to the PID controller.


2011 ◽  
Vol 328-330 ◽  
pp. 1667-1670
Author(s):  
Wen Gen Gao ◽  
Ming Jiang ◽  
Shan Shan Qiang

The permanent magnet synchronous motor (PMSM) with its high efficiency, high power factor, small volume and advantage of saving electricity in many areas, has been widely used. The paper mainly analyses PMSM direct torque control (DTC) system, and estimates the speed based on speed sensorless control system, which based on the angle of speed estimation method of the motor rotor flux vector. Use Simulink tool in MATLAB to design and realize the control system simulation, and the simulation results are analyzed. Simulation results show the correctness and feasibility of the speed observation algorithm.


Author(s):  
Takao Sato ◽  
Toru Yamamoto ◽  
Nozomu Araki ◽  
Yasuo Konishi

In the present paper, we discuss a new design method for a proportional-integral-derivative (PID) control system using a model predictive approach. The PID compensator is designed based on generalized predictive control (GPC). The PID parameters are adaptively updated such that the control performance is improved because the design parameters of GPC are selected automatically in order to attain a user-specified control performance. In the proposed scheme, the estimated plant parameters are updated only when the prediction error increases. Therefore, the control system is not updated frequently. The control system is updated only when the control performance is sufficiently improved. The effectiveness of the proposed method is demonstrated numerically. Finally, the proposed method is applied to a weigh feeder, and experimental results are presented.


2012 ◽  
Vol 225 ◽  
pp. 464-469 ◽  
Author(s):  
Ban Ying Siang ◽  
Renuganth Varatharajoo

The paper focuses on applying optimal control solutions to combined energy storage and attitude control system (CEACS) under different reference missions. In previous researches, the proportional-integral-derivative (PID) control method, the PID-active force control method and H2 control were tested for CEACS and achieved its mission requirement. However, problems such as the in-orbit system uncertainties affect the PID control performances. Thus, two optimal control methods, H2 and H∞ controls are proposed and tested on CEACS under different mission scenarios to improve its pitch attitude accuracy. Results show that both H2 and H∞ are able to achieve the reference mission requirement even under the influence of uncertainties (non-ideal). Moreover comparison between H2 and H∞ shows the H2 is a better control option for CEACS in terms of disturbance rejection.


1970 ◽  
Vol 110 (4) ◽  
pp. 13-16
Author(s):  
A. Petrovas ◽  
S. Lisauskas ◽  
R. Rinkeviciene

The design process of digital automatic control system with PID controller is considered. The solution of problems related with implementation of PID control algorithm into general purpose 8-bit microcontroller is discussed. Simulation results demonstrating performance of system are presented. Ill. 4, bibl. 6, tabl. 3 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.277


JOURNAL ASRO ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 139
Author(s):  
Teguh Herlambang ◽  
Subchan Subchan

ABSTRACT This paper is about designing motion control system with 2-DOF motion equation to be applied to an Autonomous Underwater Vehicle (AUV) system. The 2-DOF motion equation which consists of surge and roll motion in the form of equations of nonlinear motion. The control system design applied to the ITSUNUSA AUV system uses the Proportional Integral Derivative (PID) method. The simulation results of the PID control system with the motion equation with 2-DOF on the ITSUNUSA AUV system show that the system proves to be stable at a predetermined set-point with an error of 0.01% for surge motion and that with an error of 4.2% for roll motion.  Keywords: AUV, motion control, PID


Sign in / Sign up

Export Citation Format

Share Document