Design and Evaluation of Statically Balanced Compliant Mechanisms for Haptic Interfaces

Author(s):  
Levi C. Leishman ◽  
Daniel J. Ricks ◽  
Mark B. Colton

Compliant mechanisms have the potential to increase the performance of haptic interfaces by reducing the friction and inertia felt by the user. The net result is that the user feels the dynamic forces of the virtual environment, without feeling the dynamics of the haptic interface. This “transparency” typically comes at a cost — compliant mechanisms exhibit a return-to-zero behavior that must be compensated in software. This paper presents a step toward improving the situation by using statically balanced compliant mechanisms (SBCMs), which are compliant devices that do not exhibit the return-to-zero behavior typical with most compliant mechanisms. The design and construction of a prototype haptic device based on SBCMs is presented, along with its mathematical model derived using the pseudo-rigid body model (PRBM) approach. Experimental results indicate that SBCMs effectively eliminate the return-to-zero behavior and are a feasible design element in haptic interfaces.

1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. Flexible segments which maintain a constant end angle are discussed, and an example mechanism is analyzed. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract The analysis of systems containing highly flexible members is made difficult by the nonlineararities caused by large deflections of the flexible members. The analysis and design of many such systems may be simplified by using pseudo-rigid-body approximations in modeling the flexible members. The pseudo-rigid-body model represents flexible members as rigid links, joined at pin joints with torsional springs. Appropriate values for link lengths and torsional spring stiffnesses are determined such that the deflection path and force-deflection relationships are modeled accurately. Pseudo-rigid-body approximations have been developed for initially straight beams with externally applied forces at the beam end. This work develops approximations for another fundamental type of flexible member, the initially curved beam with applied force at the beam end. This type of flexible member is commonly used in compliant mechanisms. An example of the use of the resulting pseudo-rigid-body approximations in compliant mechanisms is included.


Author(s):  
Andrew J. Nielson ◽  
Larry L. Howell

Abstract This paper uses a familiar classical mechanism, the pantograph, to demonstrate the utility of the pseudo-rigid-body model in the design of compliant mechanisms to replace rigid-link mechanisms, and to illustrate the advantages and limitations of the resulting compliant mechanisms. To demonstrate the increase in design flexibility, three different compliant mechanism configurations were developed for a single corresponding rigid-link mechanism. The rigid-link pantograph consisted of six links and seven joints, while the corresponding compliant mechanisms had no more than two links and three joints (a reduction of at least four links and four joints). A fourth compliant pantograph, corresponding to a rhomboid pantograph, was also designed and tested. The test results showed that the pseudo-rigid-body model predictions were accurate over a large range, and the mechanisms had displacement characteristics of rigid-link mechanisms in that range. The limitations of the compliant mechanisms included reduced range compared to their rigid-link counterparts. Also, the force-deflection characteristics were predicted by the pseudo-rigid-body model, but they did not resemble those for a rigid-link pantograph because of the energy storage in the flexible segments.


Author(s):  
Wenjing Wang ◽  
Yueqing Yu

Dynamic effects are very important to improving the design of compliant mechanisms. An investigation on the dynamic characteristics of planar compliant parallel-guiding mechanism is presented. Based on the pseudo-rigid-body model, the dynamic model of planar compliant parallel-guiding mechanisms is developed using the numerical methods at first. The natural frequency is then calculated, and frequency characteristics of this mechanism are studied. The numerical results show the accuracy of the proposed method for dynamic modeling of compliant mechanisms, and the relationships between the natural frequency and design parameters are analyzed clearly.


Author(s):  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha ◽  
Sushrut G. Bapat

Abstract Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.


Author(s):  
Ashok Midha ◽  
Raghvendra S. Kuber ◽  
Sushrut G. Bapat

Compliant mechanisms have shown a great deal of potential, in just a few decades of its development, in providing innovative solutions to design problems. However, their use has been limited due to challenges associated with the materials. With ever increasing focus on the applications of compliant mechanisms, it is necessary to find alternatives to the existing material usage and methods of prototyping. This paper presents a methodology for the design of compliant segments and compliant mechanisms with improved creep resistance and fatigue life properties using the current state-of-the-art materials. The methodology proposes using a stronger material at the core of a softer casing. The paper provides an equivalent pseudo-rigid-body model and a closed-form elliptic integral formulation for a fixed-free compliant segment with an insert. The equivalent pseudo-rigid-body model is verified experimentally for the prediction of beam end point displacements. The paper also presents experimental results that show improvements obtained in the creep recovery properties as expected using the proposed design philosophy.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Tyler M. Pendleton ◽  
Brian D. Jensen

This paper presents an alternative to fabrication methods commonly used in compliant mechanisms research, resulting in a new class of compliant mechanisms called wireform mechanisms. This technique integrates torsional springs made of formed wire into compliant mechanisms. In this way the desired force, stiffness, and motion can be achieved from a single piece of formed wire. Two techniques of integrating torsion springs are fabricated and modeled: helical coil torsion springs and torsion bars. Because the mechanisms are more complex than ordinary springs, simplified models, which aid in design, are presented, which represent the wireform mechanisms as rigid-body mechanisms using the pseudo-rigid-body model. The method is demonstrated through the design of a mechanically tristable mechanism. The validity of the simplified models is discussed by comparison to finite element models and, in the case of the torsion-bar mechanism, to experimental measurements.


Author(s):  
Sushrut G. Bapat ◽  
Ashok Midha ◽  
Ashish B. Koli

This paper provides a generalized approach for the design of compliant mechanisms. The paper discusses the implicit uncoupling, between the kinematic and energy/torque equations, enabled by the pseudo-rigid-body model concept, and utilizes it for designing a variety of compliant mechanism types for a wide-range of user specifications. Pseudo-rigid-body four-bar mechanisms, with one to four torsional springs located at the revolute joints, are considered to demonstrate the design methodology. Mechanisms are designed for conventional tasks, such as function, path and motion generation, and path generation with prescribed timing, with energy/torque specified at the precision-positions. State-of-the-art rigid-body synthesis techniques are applied to the pseudo-rigid-body model to satisfy the kinematic requirements. Energy/torque equations are then used to account for the necessary compliance according to the user specifications. The approach utilizes a conventional, simple yet efficient optimization formulation to solve energy/torque equations that allow a designer to i) achieve realistic solutions, ii) specify appropriate energy/torque values, and iii) reduce the sensitivities associated with the ‘synthesis with compliance’ approach. A variety of examples are presented to demonstrate the applicability and effectiveness of the approach. All of the examples are verified with the finite element software ANSYS®.


Sign in / Sign up

Export Citation Format

Share Document