Damage Detection of Bridge Network With Spatiotemporal Pattern Network

Author(s):  
Chao Liu ◽  
Yongqiang Gong ◽  
Simon Laflamme ◽  
Brent Phares ◽  
Soumik Sarkar

The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. In particular, scalable data-driven approaches is of great interest, because it can deal with large volume of streaming data without requiring models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and inference and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is applied to explore spatiotemporal behaviors in bridge network. Data from strain gauges installed on two bridges are simulated by finite element method, and the causality among strain data in spatial and temporal resolutions is analyzed. Case studies are conducted for truck identification and damage detection from simulation data. Results show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, and (iii) detecting and localizing damage via the comparison of behaviors within the bridge network.

Author(s):  
Soumik Sarkar ◽  
Xin Jin ◽  
Asok Ray

An inherent difficulty in sensor-data-driven fault detection is that the detection performance could be drastically reduced under sensor degradation (e.g., drift and noise). Complementary to traditional model-based techniques for fault detection, this paper proposes symbolic dynamic filtering by optimally partitioning the time series data of sensor observation. The objective here is to mask the effects of sensor noise level variation and magnify the system fault signatures. In this regard, the concepts of feature extraction and pattern classification are used for fault detection in aircraft gas turbine engines. The proposed methodology of data-driven fault detection is tested and validated on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) test-bed developed by NASA for noisy (i.e., increased variance) sensor signals.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 452
Author(s):  
Qun Yang ◽  
Dejian Shen

Natural hazards have caused damages to structures and economic losses worldwide. Post-hazard responses require accurate and fast damage detection and assessment. In many studies, the development of data-driven damage detection within the research community of structural health monitoring has emerged due to the advances in deep learning models. Most data-driven models for damage detection focus on classifying different damage states and hence damage states cannot be effectively quantified. To address such a deficiency in data-driven damage detection, we propose a sequence-to-sequence (Seq2Seq) model to quantify a probability of damage. The model was trained to learn damage representations with only undamaged signals and then quantify the probability of damage by feeding damaged signals into models. We tested the validity of our proposed Seq2Seq model with a signal dataset which was collected from a two-story timber building subjected to shake table tests. Our results show that our Seq2Seq model has a strong capability of distinguishing damage representations and quantifying the probability of damage in terms of highlighting the regions of interest.


2019 ◽  
Vol 6 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Jie Lu ◽  
Anjin Liu ◽  
Yiliao Song ◽  
Guangquan Zhang

Abstract Data-driven decision-making ($$\mathrm {D^3}$$D3M) is often confronted by the problem of uncertainty or unknown dynamics in streaming data. To provide real-time accurate decision solutions, the systems have to promptly address changes in data distribution in streaming data—a phenomenon known as concept drift. Past data patterns may not be relevant to new data when a data stream experiences significant drift, thus to continue using models based on past data will lead to poor prediction and poor decision outcomes. This position paper discusses the basic framework and prevailing techniques in streaming type big data and concept drift for $$\mathrm {D^3}$$D3M. The study first establishes a technical framework for real-time $$\mathrm {D^3}$$D3M under concept drift and details the characteristics of high-volume streaming data. The main methodologies and approaches for detecting concept drift and supporting $$\mathrm {D^3}$$D3M are highlighted and presented. Lastly, further research directions, related methods and procedures for using streaming data to support decision-making in concept drift environments are identified. We hope the observations in this paper could support researchers and professionals to better understand the fundamentals and research directions of $$\mathrm {D^3}$$D3M in streamed big data environments.


Sign in / Sign up

Export Citation Format

Share Document