Variability in Muscle Recruitment Strategy Between Operators During Assisted Assembly Tasks

Author(s):  
Yingxin Qiu ◽  
Keerthana Murali ◽  
Jun Ueda ◽  
Atsushi Okabe ◽  
Dalong Gao

This paper reports the variability in muscle recruitment strategies among individuals who operate a non-powered lifting device for general assembly (GA) tasks. Support vector machine (SVM) was applied to the classification of motion states of operators using electromyography (EMG) signals collected from a total of 15 upper limb, lower limb, shoulder, and torso muscles. By comparing the classification performance and muscle activity features, variability in muscle recruitment strategy was observed from lower limb and torso muscles, while the recruitment strategies of upper limb and shoulder muscles were relatively consistent across subjects. Principal component analysis (PCA) was applied to identify key muscles that are highly correlated with body movements. Selected muscles at the wrist joint, ankle joint and scapula are considered to have greater significance in characterizing the muscle recruitment strategies than other investigated muscles. PCA loading factors also indicate the existence of body motion redundancy during typical pick-and-place tasks.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1407
Author(s):  
Matyas Bukva ◽  
Gabriella Dobra ◽  
Juan Gomez-Perez ◽  
Krisztian Koos ◽  
Maria Harmati ◽  
...  

Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis–Support Vector Machine (PCA–SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9–92.5% CA, 80–95% sensitivity and 80–90% specificity. AUC scores in the range of 0.82–0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors.


2019 ◽  
Vol 73 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Yun Zhao ◽  
Mahamed Lamine Guindo ◽  
Xing Xu ◽  
Miao Sun ◽  
Jiyu Peng ◽  
...  

In this study, a method based on laser-induced breakdown spectroscopy (LIBS) was developed to detect soil contaminated with Pb. Different levels of Pb were added to soil samples in which tobacco was planted over a period of two to four weeks. Principal component analysis and deep learning with a deep belief network (DBN) were implemented to classify the LIBS data. The robustness of the method was verified through a comparison with the results of a support vector machine and partial least squares discriminant analysis. A confusion matrix of the different algorithms shows that the DBN achieved satisfactory classification performance on all samples of contaminated soil. In terms of classification, the proposed method performed better on samples contaminated for four weeks than on those contaminated for two weeks. The results show that LIBS can be used with deep learning for the detection of heavy metals in soil.


2020 ◽  
Author(s):  
Muhammad Awais ◽  
Xi Long ◽  
Bin Yin ◽  
Chen chen ◽  
Saeed Akbarzadeh ◽  
...  

Abstract Objective: In this paper, we propose to evaluate the use of a pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNNs as feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally very expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results: From around 2-h Fluke® video recording of seven neonate, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future a dedicated neural network trained on neonatal data or a transfer learning approach is required.


2021 ◽  
pp. 1-14
Author(s):  
LiHua Cai ◽  
Jin Cao ◽  
MingQiang Wang ◽  
Ta Zhou ◽  
HaiFeng Fang

Both classification rate and accuracy are crucial for the recyclable PET bottles, and the existing combination methods of SVM all simply use SVM as the unit classifier, ignoring the improvement of SVM’s classification performance in the training process of deep learning. A linear multi hierarchical deep structure based on Support Vector Machine (SVM) is proposed to cover this problem. A novel definition of the input matrix in each layer enhances the optimization of Lagrange multipliers in Sequential Minimal Optimization (SMO) algorithm, thus the datapoint in maximum interval of SVM hyperplane could be recognized, improving the classification performance of SVM classifier in this layer. The loss function defined in this paper could control the depth of Linear Multi Hierarchical SVM (LMHSVM), the generalization parameters are added in the loss function and the input matrix to enhance the generalization performance of LMHSVM. The process of creating Bottle dataset by Histogram of Oriented Gradient (HOG) and Principal Component Analysis (PCA) is introduced meanwhile, reducing the data size of bottles. Experiments are conducted on LMHSVM and multiple typical classification algorithms with Bottle dataset and UCI datasets, the results indicated that LMHSVM has excellent classification performances than FNN classifier, LIBSVM (Gaussian) and GFS-AdaBoost-C in KEEL.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Awais ◽  
Xi Long ◽  
Bin Yin ◽  
Chen Chen ◽  
Saeed Akbarzadeh ◽  
...  

Abstract Objective In this paper, we propose to evaluate the use of pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNNs as a feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results From around 2-h Fluke® video recording of seven neonates, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future work a dedicated neural network trained on neonatal data or a transfer learning approach is required.


2021 ◽  
Vol 15 ◽  
Author(s):  
Keun-Tae Kim ◽  
Sangsoo Park ◽  
Tae-Hyun Lim ◽  
Song Joo Lee

In recent years, myoelectric interfaces using surface electromyogram (EMG) signals have been developed for assisting people with physical disabilities. Especially, in the myoelectric interfaces for robotic hands or arms, decoding the user’s upper-limb movement intentions is cardinal to properly control the prosthesis. However, because previous experiments were implemented with only healthy subjects, the possibility of classifying reaching-to-grasping based on the EMG signals from the residual limb without the below-elbow muscles was not investigated yet. Therefore, we aimed to investigate the possibility of classifying reaching-to-grasping tasks using the EMG from the upper arm and upper body without considering wrist muscles for prosthetic users. In our study, seven healthy subjects, one trans-radial amputee, and one wrist amputee were participated and performed 10 repeatable 12 reaching-to-grasping tasks based on the Southampton Hand Assessment Procedure (SHAP) with 12 different weighted (light and heavy) objects. The acquired EMG was processed using the principal component analysis (PCA) and convolutional neural network (CNN) to decode the tasks. The PCA–CNN method showed that the average accuracies of the healthy subjects were 69.4 ± 11.4%, using only the EMG signals by the upper arm and upper body. The result with the PCA–CNN method showed 8% significantly higher accuracies than the result with the widely used time domain and auto-regressive-support vector machine (TDAR–SVM) method as 61.6 ± 13.7%. However, in the cases of the amputees, the PCA–CNN showed slightly lower performance. In addition, in the aspects of assistant daily living, because grip force is also important when grasping an object after reaching, the possibility of classifying the two light and heavy objects in each reaching-to-grasping task was also investigated. Consequently, the PCA–CNN method showed higher accuracy at 70.1 ± 9.8%. Based on our results, the PCA–CNN method can help to improve the performance of classifying reaching-to-grasping tasks without wrist EMG signals. Our findings and decoding method can be implemented to further develop a practical human–machine interface using EMG signals.


2016 ◽  
Vol 21 (3) ◽  
pp. 45-53 ◽  
Author(s):  
Krzysztof Adamiak ◽  
Piotr Duch ◽  
Krzysztof Ślot

Abstract The paper explores possibility of improving Support Vector Machine-based classification performance by introducing an input data dimensionality reduction step. Feature extraction by means of two different kernel methods are considered: kernel Principal Component Analysis (kPCA) and Supervised kernel Principal Component Analysis. It is hypothesized that input domain transformation, aimed at emphasizing between-class differences, would facilitate classification problem. Experiments, performed on three different datasets show that one can benefit from the proposed approach, as it provides lower variability in classification performance at similar, high recognition rates.


2009 ◽  
Vol 108 (2) ◽  
pp. 339-342 ◽  
Author(s):  
Richard W. Bohannon

Single dynamometric measures are sometimes used to characterize overall muscle strength. This study examined the legitimacy of that practice by assessing how dynamometer measures of grip and knee extension strength related to manual muscle-test grades of each upper and lower limb and of the trunk. Based on correlations and principal component analysis, grip dynamometry can be used to characterize upper limb strength but not lower limb strength; knee extension dynamometry can be used to characterize lower limb and trunk strength.


2020 ◽  
Author(s):  
Muhammad Awais ◽  
Xi Long ◽  
Bin Yin ◽  
Chen chen ◽  
Saeed Akbarzadeh ◽  
...  

Abstract Objective In this paper, we propose to evaluate the use of a pre-trained convolutional neural networks (CNN’s) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNN’s as feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally very expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNN’s, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results From around 2-h Fluke® video recording of seven neonate, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future a dedicated neural network trained on neonatal data or a transfer learning approach is required.


2015 ◽  
Vol 5 (2) ◽  
pp. 20140094 ◽  
Author(s):  
Saulo Martelli ◽  
Daniela Calvetti ◽  
Erkki Somersalo ◽  
Marco Viceconti

Muscle forces can be selected from a space of muscle recruitment strategies that produce stable motion and variable muscle and joint forces. However, current optimization methods provide only a single muscle recruitment strategy. We modelled the spectrum of muscle recruitment strategies while walking. The equilibrium equations at the joints, muscle constraints, static optimization solutions and 15-channel electromyography (EMG) recordings for seven walking cycles were taken from earlier studies. The spectrum of muscle forces was calculated using Bayesian statistics and Markov chain Monte Carlo (MCMC) methods, whereas EMG-driven muscle forces were calculated using EMG-driven modelling. We calculated the differences between the spectrum and EMG-driven muscle force for 1–15 input EMGs, and we identified the muscle strategy that best matched the recorded EMG pattern. The best-fit strategy, static optimization solution and EMG-driven force data were compared using correlation analysis. Possible and plausible muscle forces were defined as within physiological boundaries and within EMG boundaries. Possible muscle and joint forces were calculated by constraining the muscle forces between zero and the peak muscle force. Plausible muscle forces were constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference increased from 40 to 108 N for 1–15 EMG inputs. The best-fit muscle strategy better described the EMG-driven pattern ( R 2 = 0.94; RMSE = 19 N) than the static optimization solution ( R 2 = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle forces closely matched the selected EMG patterns; no effect of the EMG constraint was observed on the remaining muscle force ranges. The model can be used to study alternative muscle recruitment strategies in both physiological and pathophysiological neuromotor conditions.


Sign in / Sign up

Export Citation Format

Share Document