Hierarchical Estimator of Dual Clutch Torques for a Power-Split Hybrid Electric Vehicle

Author(s):  
Jianwu Zhang ◽  
Defeng Xu

Abstract For fast drive mode transitions by shifting clutches equipped in the dedicated compound power-split hybrid transmission, correct estimations of pressure and torque of the clutches are crucial for control strategies. A hierarchical estimator is proposed herein for individual estimation of the clutch torques, consisting of not only the reference layer containing the unknown input observer of vehicle resistance and the reduced-order observer of drive shaft torque, but also the estimation layer combining the unknown input observer with the reduced-order observer. The estimator is implemented to strike a balance between estimation accuracy in the steady state and real time response in the transient state. For validation of the estimator, simulations and real car tests are carried out in specific drive conditions. By numerical results, it’s demonstrated that excellent predictive abilities are found including reasonably small estimation error and adaptive capability and, as a result, shift to shift induced driveline oscillations and vehicle jerks are reduced significantly.

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Hsiu-Ying Hwang

The use of hybrid electric vehicles is an effective means of reducing pollution and improving fuel economy. Certain vehicle control strategies commonly automatically shut down or restart the internal combustion engines of hybrid vehicles to improve their fuel consumption. Such an engine autostart/stop is not engaged or controlled by the driver. Drivers often do not expect or prepare for noticeable vibrations, noise, or an unsmooth transition when the engine is autostarted/stopped. Unsmooth engine autostart/stop transitions can cause driveline vibrations, making the ride uncomfortable and the customer dissatisfied with the vehicle. This research simulates the dynamic behaviors associated with the neutral starting and stopping of a power-split hybrid vehicle. The seat track vibration results of analysis and hardware tests of the baseline control strategy are correlated. Several antivibration control strategies are studied. The results reveal that pulse cancellation and the use of a damper bypass clutch can effectively reduce the fluctuation of the engine block reaction torque and the vibration of the seat track by more than 70% during the autostarting and stopping of the engine. The initial crank angle can have an effect on the seat track vibration as well.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 31 ◽  
Author(s):  
Xiaohua Wang ◽  
Yan Liang ◽  
Shun Liu ◽  
Linfeng Xu

This paper presents the problem of obstacle avoidance with bearing-only measurements in the case that the obstacle motion is model-free, i.e., its acceleration is absolutely unknown, which cannot be dealt with by the mainstream Kalman-like schemes based on the known motion model. First, the essential reason of the collision caused by local minimum problem in the standard artificial potential field method is proved, and hence a revised method with angle dependent factor is proposed. Then, an unknown input observer is proposed to estimate the position and velocity of the obstacle. Finally, the numeric simulation demonstrates the effectiveness in terms of estimation accuracy and terminative time.


2019 ◽  
Vol 29 (4) ◽  
pp. 655-665
Author(s):  
Juan Pablo Flores-Flores ◽  
Rafael Martinez-Guerra

Abstract This paper presents a methodology and design of a model-free-based proportional-integral reduced-order observer for a class of nondifferentially flat systems. The problem is tackled from a differential algebra point of view, that is, the state observer for nondifferentially flat systems is based on algebraic differential polynomials of the output. The observation problem is treated together with that of a synchronization between a chaotic system and the designed observer. Some basic notions of differential algebra and concepts related to chaotic synchronization are introduced. The PI observer design methodology is given and it is proven that the estimation error is uniformly ultimately bounded. To exemplify the effectiveness of the PI observer, some cases and their respective numerical simulation results are presented.


Author(s):  
Wei Zhang ◽  
Younan Zhao ◽  
Masoud Abbaszadeh ◽  
Mingming Ji

This paper considers the observer design problem for a class of discrete-time system whose nonlinear time-varying terms satisfy incremental quadratic constraints. We first construct a circle criterion based full-order observer by injecting output estimation error into the observer nonlinear terms. We also construct a reduced-order observer to estimate the unmeasured system state. The proposed observers guarantee exponential convergence of the state estimation error to zero. The design of the proposed observers is reduced to solving a set of linear matrix inequalities. It is proved that the conditions under which a full-order observer exists also guarantee the existence of a reduced-order observer. Compared to some previous results in the literature, this work considers a larger class of nonlinearities and unifies some related observer designs for discrete-time nonlinear systems. Finally, a numerical example is included to illustrate the effectiveness of the proposed design.


2020 ◽  
pp. 107754632092627
Author(s):  
Seyedeh Hamideh Sedigh Ziyabari ◽  
Mahdi Aliyari Shoorehdeli ◽  
Madjid Karimirad

In this article, a novel robust fault estimation scheme to ensure efficient and reliable operation of wind turbines has been presented. Wind turbines are complex systems with large flexible structures that work under very turbulent and unpredictable environmental conditions for a variable electrical grid. The proposed observer-based estimation scheme consists of a set of possible faults affecting the dynamics, sensors, and actuators of wind turbines. First, the pitch and drivetrain system faults occur simultaneously with process and sensor disturbances that are called unknown input signals. Second, through a series of coordinate transformations, the faulty subsystem is decoupled from the rest of the system. The first subsystem is affected by unknown inputs, and the second one is affected by faults. A reduced-order unknown input observer is designed to reconstruct states accurately, whereas a reduced-order sliding mode observer is designed for the second subsystem such that it is robust against unknown inputs and faults. Moreover, the reduced-order unknown input observer guarantees the asymptotic stability of the error dynamics using the Lyapunov theory method and completely removes unknown inputs; on the other hand, the reduced-order sliding mode observer is designed to reconstruct faults for the faulty subsystem accurately. Until now, authors only focused on an unknown input signal in the dynamics of the system, especially in nonlinear systems. The estimated fault will be adequate to accommodate the control loop, and sufficient conditions are developed to guarantee the stability of the state estimation error. In the next step, to figure the effectiveness of the proposed approach, a wind turbine benchmark system model is considered with faults and unknown inputs scenarios. The simulation results are used to validate the robustness of the proposed algorithms under noise conditions, and the results show that the algorithm could classify faults robustly.


Sign in / Sign up

Export Citation Format

Share Document