Heating of Bee Honey, Olive Oil, Milk and Water in a Solar Cooker Box Type With Internal Reflectors

Author(s):  
H. Terres ◽  
J. A. Ortega ◽  
M. Gordon ◽  
J. R. Morales ◽  
A. Lizardi

Numerical simulation results are shown to determine the heating in liquids when a solar cooker box type with internal reflector is used to this end. The data evaluated correspond to temperature values from bee honey, olive oil, milk and water when they are heated in the solar cooker. The maximum simulation temperatures reached are 91.8, 91.6, 86.2 and 85.3 °C that correspond to bee honey, olive oil, milk and water respectively. A comparative between simulation and experimental results also are shown. The values presented evidence the influence of the specific heat in each fluid considered. In the numerical simulation were used solar radiation and environment temperature values for February 26, 2006 in Mexico City. The experimental data were acquired using an Eppley piranometer and a Field Point device and were used as initial numerical conditions in the simulation. The processing information acquired was made using the LabView 7.0 software.

2014 ◽  
Vol 529 ◽  
pp. 102-107
Author(s):  
Hai Bo Luo ◽  
Ying Yan ◽  
Xiang Ji Meng ◽  
Tao Tao Zhang ◽  
Zu Dian Liang

A 7.8m/s vertical drop simulate of a full composite fuselage section was conducted with energy-absorbing floor to evaluate the crashworthiness features of the fuselage section and to predict its dynamic response to dummies in future. The 1.52m diameter fuselage section consists of a high strength upper fuselage frame, one stiff structural floor and an energy-absorbing subfloor constructed of Rohacell foam blocks. The experimental data from literature [6] were analyzed and correlated with predictions from an impact simulation developed using the nonlinear explicit transient dynamic computer code MSC.Dytran. The simulated average acceleration did not exceed 13g, by contrast with experimental results, whose relative error is less than 11%. The numerical simulation results agree with experiments well.


2016 ◽  
Vol 10 (4) ◽  
pp. 310-315 ◽  
Author(s):  
Sławomir Duda ◽  
Damian Gąsiorek ◽  
Grzegorz Gembalczyk ◽  
Sławomir Kciuk ◽  
Arkadiusz Mężyk

Abstract This paper presents a novel mechatronic device to support a gait reeducation process. The conceptual works were done by the interdisciplinary design team. This collaboration allowed to perform a device that would connect the current findings in the fields of biomechanics and mechatronics. In the first part of the article shown a construction of the device which is based on the structure of an overhead travelling crane. The rest of the article contains the issues related to machine control system. In the prototype, the control of drive system is conducted by means of two RT-DAC4/PCI real time cards connected with a signal conditioning interface. Authors present the developed control algorithms and optimization process of the controller settings values. The summary contains a comparison of some numerical simulation results and experimental data from the sensors mounted on the device. The measurement data were obtained during the gait of a healthy person.


2013 ◽  
Vol 589-590 ◽  
pp. 3-7
Author(s):  
Kui Hu Cui ◽  
Cheng Zu Ren ◽  
Guang Chen

In this paper, an advanced 3D FE model was established using ABAQUS Explicit to simulate the process of milling aluminum-alloy 7075-T7451. Taking the end edge and the side edge of single flute into consideration, the model simulated the interaction between the spiral flute and wokpiece at full depth of cut. In addition, by defining automatic element deletion criterion and locally refining mesh, this model realized chip separating from workpiece without defining of cutting layer. The simulation results were compared with experimental data to verify the correctness of the simulation model.


NANO ◽  
2009 ◽  
Vol 04 (02) ◽  
pp. 107-117 ◽  
Author(s):  
DAEKWANG WOO ◽  
JAEJUNG SEO ◽  
TAESUNG KIM

This paper presents a numerical model of silicon nanoparticle formation process during silane ( SiH 4) pyrolysis. Aerosol dynamics model, which includes particle growth by surface reaction, coagulation, and transport, was coupled with a chemical kinetics model using CHEMKIN 4.1.1 with particle tracking module (PTM). The general dynamic equation (GDE) was solved by using the method of moment (MOM). The effect of reactor temperature, pressure, total flow rate, and initial silane concentration was successfully investigated under conditions typically used for atmospheric-pressure silane pyrolysis system and we compared the calculated results on particle formation with published experimental data. The simulation results show that particle formation is very sensitive to temperature and initial silane concentration. We observed that numerical simulation results showed a good agreement with experimental data for parameters such as particle concentration, diameter, growth rate, and total volume concentration.


2011 ◽  
Vol 130-134 ◽  
pp. 1568-1572
Author(s):  
Hui Wang ◽  
Jie Gang Mu ◽  
Miao Yin Su ◽  
Shui Hua Zheng ◽  
Jin Jing Zhao ◽  
...  

The paper studies the relationship between axial force and breadth of back blade by numerical simulation and experiment. On the basis of the RNG k-ε turbulence model and technology of compact local grids and regional computing, three dimensional numerical simulations to 100HZ165-250 centrifugal pump with various breadths were carried out. Through comparing and analyzing of the flow field, it can be seen that the axial force reduces with the increase of the back blade breadth. After that, the simulation results were verified by the experimental data got from different test devices, and it shows that the conclusions are reliable.


2012 ◽  
Vol 516-517 ◽  
pp. 634-637
Author(s):  
Zhi Xia He ◽  
Li Li Tian ◽  
Ju Yan Liu

In addition to the aerodynamic effects, turbulence and cavitation play an important role on the primary atomization. Different spray breakup models were analysized and evaluated though simulation of spray with them and then a new model of coupling the nozzle cavitating and turbulence flow to the spray primary breakup was put forward. The numerical simulation results with all these different spray primary breakup models were comparied with the experimental data and then the new model were proved to be much better. The study may effectively help establish the accurate spray breakup model.


Sign in / Sign up

Export Citation Format

Share Document