Energy and Exergy Assessments of a New Trigeneration System Based on Organic Rankine Cycle and Biomass Combustor

Author(s):  
Fahad A. Al-Sulaiman ◽  
Feridun Hamdullahpur ◽  
Ibrahim Dincer

In this paper, energy and exergy analyses of a trigeneration system based on an organic Rankine cycle (ORC) and a biomass combustor are presented. This trigeneration system consists of a biomass combustor to provide heat input to the ORC, an ORC for power production, a single-effect absorption chiller for cooling process and a heat exchanger for heating process. The system is designed to produce around 500 kW of electricity. In this study, four cases are considered, namely, electrical-power, cooling-cogeneration, heating-cogeneration and trigeneration cases. The effects of changing ORC pump inlet temperature and turbine inlet pressure on different key parameters have been examined to evaluate the performance of the trigeneration system. These parameters are energy and exergy efficiencies, electrical to cooling ratio and electrical to heating ratio. Moreover, exergy destruction analysis is presented to show the main sources of exergy destruction and the contribution of each source to the exergy destruction. The study shows that there are significant improvements in energy and exergy efficiencies when trigeneration is used as compared to electrical power. The results show that the maximum efficiencies for the cases considered in this study are as follows: 14.0% for electrical power, 17.0% for cooling cogeneration, 87.0% for heating cogeneration and 89.0% for trigeneration. On other hand, the maximum exergy efficiency of the ORC is 13.0% while the maximum exergy efficiency of the trigeneration system is 28.0%. In addition, this study reveals that the main sources of exergy destruction are the biomass combustor and ORC evaporator.

2021 ◽  
pp. 1-38
Author(s):  
Md. Tareq Chowdhury ◽  
Esmail M. A. Mokheimer

Abstract In this study, the performance of Parabolic Trough Collector (PTC) integrated with Organic Rankine Cycle (ORC) is investigated to find the optimum operating scenarios and to assess the exergy destruction at different components of the system. Commercial PTC LS-2 model with Therminol VP-1 as heat transfer fluid was integrated with an organic Rankine cycle that was examined for its thermal and exergetic performance using different organic fluids. It was found that every fluid has an optimum pressure and temperature level at which it works better than other fluids. R134a (Tetrafluoroethane, CH2FCF3) showed the best performance for the turbine inlet temperature range from 340 K — 440 K regarding the achieved energy and exergy efficiencies. At a temperature of 362.8 K and a pressure of 2750 kPa, R134a showed the highest energy efficiency of 8.55% and exergy efficiency of 21.84% with the lowest mass flow rate required in ORC. Energy efficiency of other fluids namely, R245fa (Pentafluoropropane, CF3CH2CHF2), n-pentane and Toluene were less than 5%. On the other hand, Toluene exhibited thermal efficiency of 23.5 % at turbine inlet temperature of 550 K and pressure of 2500 kPa, while the exergy efficiency was 62.89 % at solar irradiation of 1 kW/m2.


2019 ◽  
Vol 9 (23) ◽  
pp. 5028 ◽  
Author(s):  
Pektezel ◽  
Acar

This paper presents energy and exergy analysis of two vapor compression refrigeration cycles powered by organic Rankine cycle. Refrigeration cycle of combined system was designed with single and dual evaporators. R134a, R1234ze(E), R227ea, and R600a fluids were used as working fluids in combined systems. Influences of different parameters such as evaporator, condenser, boiler temperatures, and turbine and compressor isentropic efficiencies on COPsys and ƞex,sys were analyzed. Second law efficiency, degree of thermodynamic perfection, exergy destruction rate, and exergy destruction ratio were detected for each component in systems. R600a was determined as the most efficient working fluid for proposed systems. Both COPsys and ƞex,sys of combined ORC-single evaporator VCR cycle was detected to be higher than the system with dual evaporator.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1141 ◽  
Author(s):  
Xin Wang ◽  
Yong-qiang Feng ◽  
Tzu-Chen Hung ◽  
Zhi-xia He ◽  
Chih-Hung Lin ◽  
...  

Based on a 10-kW organic Rankine cycle (ORC) experimental prototype, the system behaviors using a plunger pump and centrifugal pump have been investigated. The heat input is in the range of 45 kW to 82 kW. The temperature utilization rate is defined to appraise heat source utilization. The detailed components’ behaviors with the varying heat input are discussed, while the system generating efficiency is examined. The exergy destruction for the four components is addressed finally. Results indicated that the centrifugal pump owns a relatively higher mass flow rate and pump isentropic efficiency, but more power consumption than the plunger pump. The evaporator pressure drops are in the range of 0.45–0.65 bar, demonstrating that the pressure drop should be considered for the ORC simulation. The electrical power has a small difference using a plunger pump and a centrifugal pump, indicating that the electric power is insensitive on the pump types. The system generating efficiency for the plunger pump is approximately 3.63%, which is 12.51% higher than that of the centrifugal pump. The exergy destruction for the evaporator, expander, and condenser is almost 30%, indicating that enhancing the temperature matching between the system and the heat (cold) source is a way to improve the system performance.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3032 ◽  
Author(s):  
Xiaoli Yu ◽  
Zhi Li ◽  
Yiji Lu ◽  
Rui Huang ◽  
Anthony Roskilly

An innovative cascade cycle combining a trilateral cycle and an organic Rankine cycle (TLC-ORC) system is proposed in this paper. The proposed TLC-ORC system aims at obtaining better performance of temperature matching between working fluid and heat source, leading to better overall system performance than that of the conventional dual-loop ORC system. The proposed cascade cycle adopts TLC to replace the High-Temperature (HT) cycle of the conventional dual-loop ORC system. The comprehensive comparisons between the conventional dual-loop ORC and the proposed TLC-ORC system have been conducted using the first and second law analysis. Effects of evaporating temperature for HT and Low-Temperature (LT) cycle, as well as different HT and LT working fluids, are systematically investigated. The comparisons of exergy destruction and exergy efficiency of each component in the two systems have been studied. Results illustrate that the maximum net power output, thermal efficiency, and exergy efficiency of a conventional dual-loop ORC are 8.8 kW, 18.7%, and 50.0%, respectively, obtained by the system using cyclohexane as HT working fluid at THT,evap = 470 K and TLT,evap = 343 K. While for the TLC-ORC, the corresponding values are 11.8 kW, 25.0%, and 65.6%, obtained by the system using toluene as a HT working fluid at THT,evap = 470 K and TLT,evap = 343 K, which are 34.1%, 33.7%, and 31.2% higher than that of a conventional dual-loop ORC.


2021 ◽  
Vol 1 (1) ◽  
pp. 15-24
Author(s):  
Malik El’Houyoun Ahamadi ◽  
Hery T. Rakotondramiarana

In the ylang-ylang essential oil distillers in Anjouan Island, the used energy is 100% firewood biomass. A large amount of this energy is dissipated in the environment just in the combustion chamber itself. As it turns out, the flue gases in this process take away the most part of it. Thus, in a process of energy efficiency of stills, the present work aims at assessing the possibility to convert the residual heat from the process into electricity. For that purpose, energy and exergy modeling of an organic Rankine cycle was implemented. It was found that a large amount of exergy is destroyed in the evaporator. Similarly, it emerges that the exergy efficiency of the cycle depends on the inlet temperatures of the exhaust gases in the evaporator and on the inlet pressure of the working fluid in the turbine, and that it is much better for low exhaust gas temperatures. At these low values of gas temperatures, it appears that the improvement in exergy efficiency and energy efficiency are linked to the increase in the inlet pressure of the working fluid in the turbine. It follows from the obtained results that the discharged hot water and the residual heat of gases having temperatures ranging from 180°C to 300 °C, could be used for power production which can reach electrical powers between 1.4kW and 4.5kW  


2019 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ghalya Pikra ◽  
Nur Rohmah

Regenerative organic Rankine cycle (RORC) can be used to improve organic Rankine cycle (ORC) performance. This paper presents a comparison of a single (SSRORC) and double stage regenerative organic Rankine cycle (DSRORC) using a medium grade heat source. Performance for each system is estimated using the law of thermodynamics I and II through energy and exergy balance. Solar thermal is used as the heat source using therminol 55 as a working fluid, and R141b is used as the organic working fluid. The initial data for the analysis are heat source with 200°C of temperature, and 100 L/min of volume flow rate. Analysis begins by calculating energy input to determine organic working fluid mass flow rate, and continued by calculating energy loss, turbine power and pump power consumption to determine net power output and thermal efficiency. Exergy analysis begins by calculating exergy input to determine exergy efficiency. Exergy loss, exergy destruction at the turbine, pump and feed heater is calculated to complete the calculation. Energy estimation result shows that DSRORC determines better net power output and thermal efficiency for 7.9% than SSRORC, as well as exergy estimation, DSRORC determines higher exergy efficiency for 7.69%. ©2019. CBIORE-IJRED. All rights reserved


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

The optimization of energy conversion systems is of great significance in the utilization of low-grade heat. This paper presents an analysis of 6 working fluids in 12 thermodynamic cycles to optimize the energy conversion systems. The optimal exergy efficiency of the system is dependent on the type of the thermodynamic cycle, the choice of appropriate working fluid, and the working conditions. A zeotropic mixture of R134a and R245fa shows advantages in energy conversion process, as well as its heat exchange with the heat source and heat sink. The exergy efficiency of a 0.5R134a/0.5R245fa-based supercritical Rankine cycle system is 0.643–0.689 for a turbine inlet temperature of 415–445K, which is about 30% improvement over the exergy efficiency of 0.491–0.521 for a pure R32-based organic Rankine cycle under the same temperature limits. Furthermore, the 0.5R134a/0.5R245fa mixture saves more than 60% of the cooling water during the condensation process than the pure R32, R134a and R245fa.


Sign in / Sign up

Export Citation Format

Share Document