Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

Author(s):  
Zhiwen Ma ◽  
Janna Martinek

Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000°C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40°C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to ≥720°C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhiwen Ma ◽  
Janna Martinek

Abstract Concentrating solar power (CSP) development has focused on increasing the energy conversion efficiency and lowering the capital cost. To improve performance, CSP research is moving to high-temperature and high-efficiency designs. One technology approach is to use inexpensive, high-temperature heat transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (sCO2) Brayton power cycle. The sCO2 Brayton power cycle has strong potential to achieve performance targets of 50% thermal-to-electric efficiency and dry cooling at an ambient temperature of up to 40 °C and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat transfer or storage medium that is inexpensive and stable at high temperatures above 1000 °C. The particle/sCO2 heat exchanger (HX) provides a connection between the particles and sCO2 fluid in emerging sCO2 power cycles. This article presents heat transfer modeling to analyze the particle/sCO2 HX design and assess design tradeoffs including the HX cost. The heat transfer process was modeled based on a particle/sCO2 counterflow configuration, and empirical heat transfer correlations for the fluidized bed and sCO2 were used to calculate heat transfer area and estimate the HX cost. A computational fluid dynamics simulation was applied to characterize particle distribution and fluidization. This article shows a path to achieve the cost and performance objectives for a particle/sCO2 HX design by using fluidized-bed technology.


Author(s):  
Sundaresan Subramanian ◽  
Roald Akberove ◽  
Yitung Chen ◽  
Anthony E. Hechanova ◽  
Clayton Ray De Losier

This paper deals with the development of an advanced high temperature heat exchanger design for hydrogen production by the sulfur iodine thermochemical cycle from advanced nuclear reactor concepts. The offset strip-fin hybrid plate type compact heat exchanger concept is chosen, and the material of manufacture is the liquid silicon impregnated carbon composite. The offset strip-fin is chosen as a method of heat transfer enhancement due to the boundary layer restart mechanism between the fins that has a direct effect on enhancing heat transfer. The effect of the fin thickness, pitch in flow direction, and the aspect ratio of the offset fins on the flow field and heat transfer are studied in 2-D using Computational Fluid Dynamics (CFD) techniques, and the results are then compared with the analytical calculation results. The preprocessor GAMBIT is used to create a computational mesh, and the CFD software package FLUENT, that is based on the finite volume method is used to produce numerical results. Proper dimensions of the strip fins need to be chosen in order to have an optimized heat transfer enhancement coupled with a reduced pressure drop. The study is conducted with helium gas as the working fluid with varied of Reynolds number values. The flow and heat transfer is considered to become periodically fully developed after a certain entrance length hence numerical simulations were performed using periodic boundary conditions. Two-dimensional numerical simulations were also performed for the whole length of the heat exchanger which has 37 such periodic modules. Comparison study was performed between the cases of fins with rectangular and curved geometry. Attempt has also been made in order to validate the coefficient of fin thickness (Cfin) value using CFD techniques, which has been used in the existing empirical correlations to suit this type of heat exchanger geometry. The model developed in this paper is used to investigate the heat exchanger design parameters in order to find an optimal design.


Author(s):  
Sundaresan Subramanian ◽  
Roald Akberov ◽  
Clayton Ray DeLosier ◽  
Yitung Chen ◽  
Anthony E. Hechanova ◽  
...  

This paper deals with the development of a three-dimensional numerical model to predict the overall performance of an advanced high temperature heat exchanger design, up to 1000°C, for the production of hydrogen by the sulfur iodine thermo-chemical cycle used in advanced nuclear reactor concepts. The design is an offset strip-fin, hybrid plate compact heat exchanger made from a liquid silicon impregnated carbon composite material. The two working fluids are helium gas and molten salt (Flinak). The offset strip-fin is chosen as a method of heat transfer enhancement due to the boundary layer restart mechanism between the fins that has a direct effect on heat transfer enhancement. The effects of the fin geometry on the flow field and heat transfer are studied in three-dimensions using Computational Fluid Dynamics (CFD) techniques. The pre-processor GAMBIT is used to create a computational mesh, and the CFD software package FLUENT that is based on the finite volume method is used to produce the numerical results. Fin dimensions need to be chosen that optimize heat transfer and minimize pressure drop. Comparison of the overall performance between two fin shapes (rectangular versus curved edges) is performed using analytical calculations (where available) as well as computational fluid dynamics techniques. The analytical calculations predict larger pressure losses than the numerical simulations. The model developed in this paper will be used to investigate the heat exchanger design parameters in order to find an optimal design.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Clifford K. Ho ◽  
Matthew Carlson ◽  
Kevin J. Albrecht ◽  
Zhiwen Ma ◽  
Sheldon Jeter ◽  
...  

This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥20 MPa) and high temperature (≥700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytic hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability, and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kWt shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.


Author(s):  
Q. Y. Chen ◽  
M. Zeng ◽  
D. H. Zhang ◽  
Q. W. Wang

In the present paper, the compact ceramic high temperature heat exchangers with parallel offset strip fins and inclined strip fins (inclined angle β = 0∼70°) are investigated with CFD method. The numerical simulations are carried out for high temperature (1500°C), without and with radiation heat transfer, and the periodic boundary is used in transverse direction. The fluid of high temperature side is the standard flue gas. The material of heat exchanger is SiC. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuNo.R (without radiation heat transfer) by 7% and fS-G.R is averagely higher than fNo.R by 5%. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuS.R (with only surface radiation heat transfer) by 0.8% and fS-G.R is averagely higher than fS.R by 3%. The thermal properties have significantly influence on the heat transfer and pressure drop characteristics, respectively. The heat transfer performance of the ceramic heat exchanger with inclined fins (β = 30°) is the best.


Author(s):  
Sundaresan Subramanian ◽  
Valery Ponyavin ◽  
Clayton Ray De Losier ◽  
Yitung Chen ◽  
E. Hechanova ◽  
...  

This paper deals with the development of a three-dimensional numerical model to predict the overall performance of an advanced high temperature heat exchanger design, up to 1000°C, for the production of hydrogen by the sulfur iodine thermo-chemical cycle used in advanced nuclear reactor concepts. The design is an offset strip-fin, hybrid plate compact heat exchanger made from a liquid silicon impregnated carbon composite material. The two working fluids are helium gas and molten salt (Flinak). The offset strip-fin is chosen as a method of heat transfer enhancement due to the boundary layer restart mechanism between the fins that has a direct effect on heat transfer enhancement. The effects of the fin geometry on the flow field and heat transfer are studied in three-dimensions using Computational Fluid Dynamics (CFD) techniques. The pre-processor GAMBIT is used to create a computational mesh, and the CFD software package FLUENT that is based on the finite volume method is used to produce the numerical results. Fin dimensions need to be chosen that optimize heat transfer and minimize pressure drop. Comparison of the overall performance between two fin shapes (rectangular versus curved edges) is performed using computational fluid dynamics techniques. Fin and channel dimensions need to be chosen such as to optimize heat transfer performance and minimize pressure drop. The study is conducted with helium gas and liquid salt as the working fluids with a variety of Reynolds number values and fin dimensions. Both laminar and turbulent modeling is performed for the helium side fluid flow. The effect of the fin geometry is performed computational fluid dynamics techniques and optimization studies are performed. The model developed in this paper is used to investigate the heat exchanger design parameters in order to find an optimal design.


2011 ◽  
Vol 396-398 ◽  
pp. 897-903
Author(s):  
Shi Mei Sun ◽  
Jing Min Zhou

A High Temperature Heat Pipe Heat Exchanger Consists of Heat Pipes Filled with Different Working Media inside. in Different Temperature Zones, Heat Pipes with Different Working Media Are Linked Safely by Controlling the Vapor Temperature, the Media inside the Heat Pipe. the Vapor Temperature inside the Pipe Is Heavily Affected by the Temperature Field of Fluid outside the Heat Pipes and the Heat Transfer Performance inside the Heat Pipe, while the Heat Transfer Performance inside the Pipe in Turn Has a Bearing on the Temperature Distribution of Fluid outside the Pipe. to Coordinate the Fluid Temperature Distribution both inside and outside the Pipes, Study on Local Heat Transfer Enhancement Has Been Conducted on High Temperature Heat Pipe Heat Exchanger in this Article, and Cfd Computational Software Was Used to Make Rational and Accurate Prediction of Fluid Temperature Distribution both inside and outside the Pipes, so as to Provide Economic and Reliable Design Basis for High Temperature Heat Pipe Heat Exchanger.


Author(s):  
James C. Govern ◽  
Cila V. Herman ◽  
Dennis C. Nagle

Many nuclear engineering applications, current and future, require heat exchangers operating at high temperatures. The operating conditions and performance requirements of these heat exchangers present special design challenges. This paper considers these challenges with respect to a simple heat exchanger design manufactured of a novel carbon material. Heat transfer and effectiveness calculations are performed for several parametric studies regarding heat exchanger parameters. These results are used to better understand the design challenges of high temperature heat exchangers as well as provide a starting point for future optimization work on more complex heat exchanger designs.


Author(s):  
Valery Ponyavin ◽  
Yitung Chen ◽  
Anthony E. Hechanova ◽  
Merrill Wilson

This paper presents fluid flow and heat transfer study of a high temperature heat exchanger and chemical decomposer. The decomposer will be used as a part of the plant for hydrogen production. The decomposer is manufactured using fused ceramic layers that allow creation of channels with dimensions below one millimeter. The main purpose for this study is to increase thermal performance of the decomposer which can help to intensify sulfuric acid decomposition rate. Effects of using various channel geometries of the decomposer on the pressure drop are studied as well. A three-dimensional computational model is developed for the investigation of fluid flow and heat transfer in the decomposer. Several different geometries of the decomposer channels such as straight channels, ribbed ground channels, hexagonal channels, and diamond-shaped channels are examined. Based on results of the calculation, the recommendations for the improved design of the decomposer are obtained.


Sign in / Sign up

Export Citation Format

Share Document