Heat Flux Distribution Over a Solar Central Receiver Using an Aiming Strategy Based on a Conventional Closed Control Loop

Author(s):  
Jesús García ◽  
Yen Chean Soo Too ◽  
Ricardo Vasquez Padilla ◽  
Rodrigo Barraza Vicencio ◽  
Andrew Beath ◽  
...  

Solar thermal towers are a maturing technology that have the potential to supply a significant part of energy requirements of the future. One of the issues that needs careful attention is the heat flux distribution over the central receiver’s surface. It is imperative to maintain receiver’s thermal stresses below the material limits. Therefore, an adequate aiming strategy for each mirror is crucial. Due to the large number of mirrors present in a solar field, most aiming strategies work using a data base that establishes an aiming point for each mirror depending on the relative position of the sun and heat flux models. This paper proposes a multiple-input multiple-output (MIMO) closed control loop based on a methodology that allows using conventional control strategies such as those based on Proportional Integral Derivative (PID) controllers. Results indicate that even this basic control loop can successfully distribute heat flux on the solar receiver.

Author(s):  
Edrissa Gassama ◽  
Charles Panzarella ◽  
Jeffrey Cochran

There is much interest in predicting the optimal operating conditions of a coke drum in order to extend its life and optimize both maintenance and repair. Typically, only temperature measurements on the outer surface of the wall are available from monitoring. In order to predict damage due to thermal stresses and other mechanisms, the temperature distribution through the wall is required. This could be determined if the heat flux on the inner surface of the wall were known, but this is difficult to obtain directly. In this paper, the heat flux distribution on the inner wall is determined solely from thermocouple measurements taken on the outside of the wall by solving a stochastic inverse heat conduction problem (IHCP). A finite element analysis is used to solve the forward thermal problem, and a Bayesian inference approach is used to model the posterior probability distribution of the heat flux. A newly developed probabilistic sampling technique known as the Particle Raking Algorithm (PRA) is found to be quite effective at solving this inverse problem. Once determined, the heat flux distribution is then applied as a boundary condition for the finite element model to determine the through-wall temperature distribution.


1986 ◽  
Vol 53 (1) ◽  
pp. 116-120 ◽  
Author(s):  
T. Fett

The transient and stationary temperature distributions in a tube wall caused by an asymmetrical heat flux distribution are evaluated. The results are represented for the case of a heat radiating half-space. In addition, the accompanying stress distributions are computed.


2016 ◽  
Vol 103 ◽  
pp. 264-273 ◽  
Author(s):  
Dalong Zhang ◽  
Chenwei Meng ◽  
Hai Zhang ◽  
Pengyuan Liu ◽  
Zhouhang Li ◽  
...  

Author(s):  
D. H. Zhu ◽  
B. Z. Li ◽  
J. G. Yang

This paper studies the heat transfer mechanism in deep grinding process, especially the heat flux to the workpiece. On the basis of triangle moving heat source, a quadratic curve heat flux model in the grinding zone was developed to determine the heat flux distribution and to estimate the surface temperature of workpiece. From the calculated theoretical expression of heat flux to the workpiece, the quadratic curve heat flux can be understood as the superposition of square law heat flux, triangular heat flux and uniform heat flux in the grinding zone. Then four heat flux models using the determined amount of heat flux were applied to estimate the workpiece surface temperatures which were compared with that measured by the embedded thermocouple. It has been found that the quadratic curve heat flux distribution seems to give the best match with measured and theoretical temperature, although square law heat flux model is good enough to predict the temperature.


2018 ◽  
Vol 22 (2) ◽  
pp. 899-897
Author(s):  
Xiaohong Gui ◽  
Xiange Song ◽  
Baisheng Nie

The effects of contact angle and superheat on thin-film thickness and heat flux distribution occurring in a rectangle microgroove are numerically simulated. Accordingly, physical, and mathematical models are built in detail. Numerical results indicate that meniscus radius and thin-film thickness increase with the improvement of contact angle. The heat flux distribution in the thin-film region increases non-linearly as the contact angle decreases. The total heat transfer through the thin-film region increases with the improvement of superheat, and decreases as the contact angle increases. When the contact angle is equal to zero, the heat transfer in the thin-film region accounts for more than 80% of the total heat transfer. Intensive evaporation in the thin-film region plays a key role in heat transfer for the rectangle capillary microgroove. The liquid with higher wetting performance is more capable of playing the advantages of higher intensity heat transfer in thin- film region. The current investigation will result in a better understanding of thin- -film evaporation and its effect on the effective thermal conductivity in the rectangle microgroove.


2008 ◽  
Author(s):  
J.C. Batsale ◽  
J.P. Lasserre ◽  
M. Varenne-Pellegrini ◽  
V. Desormiere ◽  
L. Authesserre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document