Perceptuo-Motor Transparency in Bilateral Teleoperation

Author(s):  
Ilana Nisky ◽  
Ferdinando A. Mussa-Ivaldi ◽  
Amir Karniel

In bilateral teleoperation, the operator holds a local robot which determines the motion of a remote robot and continuously receives delayed force feedback. Transparency is a measure of teleoperation system fidelity. The ideal teleoperator system is the identity channel, in which there is neither delay nor distortion. During the last decades transparency was widely analyzed using two-port hybrid representation of the system in Laplace domain. Such representations define hybrid matrix that maps between the transmission channel inputs and outputs. However, in measuring transparency one should consider also the human operator, and therefore we propose a multidimensional measure of transparency which takes into account: i) Perceptual transparency: The human operator cannot distinguish when the teleoperation channel is being replaced by an identity channel. ii) Local Motor transparency: The movement of the operator does not change when the teleoperation channel is replaced by an identity channel. iii) Remote transparency: The movement of the remote robot does not change when the teleoperation channel is replaced by an identity channel. We hypothesize that by selecting filters and training protocol it is possible to obtain perceptually transparent teleoperation (i) and remote motor transparency (iii) without local motor transparency (ii), namely, to transparentize the system. We formally define the transparency error, analyze this process in the linear case, and simulate simplified teleoperation system according to typical experimental results in our previous studies about perception of delayed stiffness. We believe that these tools are essential in developing functional teleoperation systems.

2019 ◽  
Vol 29 (4) ◽  
pp. 681-692 ◽  
Author(s):  
Edgar Estrada ◽  
Wen Yu ◽  
Xiaoou Li

Abstract Haptic guidance can improve control accuracy in bilateral teleoperation. With haptic sensing, the human operator feels that he grabs the robot on the remote side. There are results on the stability and transparency analysis of teleoperation without haptic guidance, and the analysis of teleoperation with haptic feedback is only for linear and zero time-delay systems. In this paper, we consider more general cases: the bilateral teleoperation systems have time-varying communication delays, the whole systems are nonlinear, and they have force feedback. By using the admittance human operator model, we propose a new control scheme with the interaction passivity of the teleoperator. The stability and transparency of the master-slave system are proven with the Lyapunov–Krasovskii method. Numerical simulations illustrate the efficiency of the proposed control methods.


Robotica ◽  
2015 ◽  
Vol 35 (5) ◽  
pp. 1121-1136 ◽  
Author(s):  
Emre Uzunoğlu ◽  
Mehmet İsmet Can Dede

SUMMARYIn this study, a bilateral teleoperation control algorithm is developed in which the model-mediation method is integrated with an impedance controller. The model-mediation method is also extended to three-degrees-of-freedom teleoperation. The aim of this controller is to compensate for instability issues and excessive forcing applied to the slave environment stemming from time delays in communication. The proposed control method is experimentally tested with two haptic desktop devices. Test results indicate that stability and passivity of the bilateral teleoperation system is preserved under variable time delays in communication. It is also observed that safer interactions of the slave system with its environment can be achieved by utilizing an extended version of the model-mediation method with an impedance controller.


2017 ◽  
Vol 26 (2) ◽  
pp. 210-227 ◽  
Author(s):  
Ting Yang ◽  
Junfeng Hu ◽  
Wei Geng ◽  
Yili Fu ◽  
Mahdi Tavakoli

In a bilateral teleoperation system, discrete-time implementation of the controller can cause performance degradation. This is due to a well-known stability-imposed upper bound on the product of the discrete-time controller's gain and the sampling period. In this article, for a bilateral teleoperation system, a continuous-time controller based on a Field Programmable Analog Array (FPAA) is deployed and compared in terms of performance with its discrete-time counterpart. Experimental results show that, unlike the discrete-time controller, the FPAA-based controller helps the human user complete teleoperation tasks that require high controller gains such as when a large impedance needs to be displayed against the user's hand. Also, an experimental object stiffness discrimination study shows that large sampling periods, necessitating low control gains for maintaining stability, lead to unacceptable task performance by the user; however, the users show an improved ability to discriminate the various objects if the teleoperation controller is implemented using an FPAA.


Author(s):  
H. Amini ◽  
S. M. Rezaei ◽  
Ahmed A. D. Sarhan ◽  
J. Akbari ◽  
N. A. Mardi

Teleoperation systems have been developed in order to manipulate objects in environments where the presence of humans is impossible, dangerous or less effective. One of the most attractive applications is micro telemanipulation with micropositioning actuators. Due to the sensitivity of this operation, task performance should be accurately considered. The presence of force signals in the control scheme could effectively improve transparency. However, the main restriction is force measurement in micromanipulation scales. A new modified strategy for estimating the external forces acting on the master and slave robots is the major contribution of this paper. The main advantage of this strategy is that the necessity for force sensors is eliminated, leading to lower cost and further applicability. A novel control algorithm with estimated force signals is proposed for a general nonlinear macro–micro bilateral teleoperation system with time delay. The stability condition in the macro–micro teleoperation system with the new control algorithm is verified by means of Lyapunov stability analysis. The designed control algorithm guarantees stability of the macro–micro teleoperation system in the presence of an estimated operator and environmental force. Experimental results confirm the efficiency of the novel control algorithm in position tracking and force reflection.


2016 ◽  
Vol 40 (11) ◽  
pp. 3252-3262 ◽  
Author(s):  
Zheng Chen ◽  
Ya-Jun Pan ◽  
Jason Gu ◽  
Shane Forbrigger

Multilateral teleoperation systems, which are extended from the traditional bilateral teleoperation, have become subject to increasing attention in current years, with increasing industrial requirements, such as the remote operation of larger objects and more complex tasks. In this paper, a general multilateral teleoperation control problem is discussed, in which n masters remotely control n slaves through delayed communication channels. A novel communication structure is proposed to satisfy the multiple master–slave communication requirement, in which weighting coefficients are chosen freely to perform the weighted effects of different masters or slaves. Power-based time-domain passivity control is subsequently developed for the complex multiple master–slave communication channel, to achieve the passivity of multilateral teleoperation systems under time delay. Experiments on a teleoperation system with two masters and two slaves are described; the results verify the effectiveness of the proposed control scheme.


Robotica ◽  
2015 ◽  
Vol 34 (9) ◽  
pp. 2151-2161 ◽  
Author(s):  
E. Slawiñski ◽  
S. García ◽  
L. Salinas ◽  
V. Mut

SUMMARYThis paper proposes a control scheme applied to the delayed bilateral teleoperation of mobile robots with force feedback in face of asymmetric and time-varying delays. The scheme is managed by a velocity PD-like control plus impedance and a force feedback based on damping and synchronization error. A fictitious force, depending on the robot motion and its environment, is used to avoid possible collisions. In addition, the stability of the system is analyzed from which simple conditions for the control parameters are established in order to assure stability. Finally, the performance of the delayed teleoperation system is shown through experiments where a human operator drives a mobile robot.


Robotica ◽  
2019 ◽  
Vol 37 (10) ◽  
pp. 1768-1784 ◽  
Author(s):  
E. Slawiñski ◽  
V. Moya ◽  
D. Santiago ◽  
V. Mut

SummaryThis document proposes a control scheme for delayed bilateral teleoperation of a mobile robot, which it is sought to achieve a coordination of the master device position with the slave mobile robot velocity, and at the same time synchronize the force exerted by the operator with force applied by the environment over the mobile robot. This approach allows the operator to improve the sensitive perception of the remote environment in which the robot navigates while he generates commands to control the mobile robot motion. In this paper, variable and asymmetrical communication time delays are taken into account, as well as a non-passive model of the human operator, for which a novel model is proposed that has a more general structure than the typical ones used to date in the teleoperation field. Furthermore, based on the theoretical analysis presented, the state of convergence in the stationary response is obtained. In addition, an experimental performance evaluation is carried out, where the position–velocity error, force error and the time to complete the task are evaluated. In the tests, a human operator commands a remote mobile robot to push objects of different weight while he perceives the weight of each object through the force feedback system. As an outcome, the theoretical and practical results obtained allow concluding that a satisfactory trade-off between stability and transparency is reached.


Robotica ◽  
2020 ◽  
pp. 1-19
Author(s):  
Viviana Moya ◽  
Emanuel Slawiñski ◽  
Vicente Mut

SUMMARY This paper proposes a shared control scheme which aims to achieve a stable control of the speed and turn of a bipedal robot during a delayed bilateral teleoperation. The strategy allows to get a delay-dependent damping value that must be injected to assure a bounded response of the hybrid system, while simultaneously, the human operator receives a force feedback that help him to decrease the synchronism error. Furthermore, a test where a human operator handles the walking of a simulated bipedal robot, to follow a curve path in front of varying time delay, is performed and analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Franco Penizzotto ◽  
Sebastian García ◽  
Emanuel Slawiñski ◽  
Vicente Mut

This paper proposes a control scheme applied to the delayed bilateral teleoperation of wheeled robots with force feedback, considering the performance of the operator’s command execution. In addition, the stability of the system is analyzed taking into account the dynamic model of the master as well as the remote mobile robot under asymmetric and time-varying delays of the communication channel. Besides, the performance of the teleoperation system, where a human operator drives a 3D simulator of a wheeled dynamic robot, is evaluated. In addition, we present an experiment where a robot Pioneer is teleoperated, based on the system architecture proposed.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yuling Li

The presence of time delays in communication introduces a limitation to the stability of bilateral teleoperation systems. This paper considers internal model control (IMC) design of linear teleoperation system with time delays, and the stability of the closed-loop system is analyzed. It is shown that the stability is guaranteed delay-independently. The passivity assumption for external forces is removed for the proposed design of teleoperation systems. The behavior of the resulting teleoperation system is illustrated by simulations.


Sign in / Sign up

Export Citation Format

Share Document