Virtual Evaluation for Machine Tool Design

Author(s):  
Masahiko Mori ◽  
Zachary I. Piner ◽  
Ke Ding ◽  
Adam Hansel

This paper presents the virtual machine tool environment Mori Seiki established for the evaluation of static, dynamic, and thermal performance of Mori Seiki machine tools. In this system environment, machining accuracy and quality are the main focus for each individual analysis discipline. The structural analysis uses the Finite Element Method (FEM) to monitor and optimize the static rigidity of the machine tool. Correlation between physical experiments and digital simulation is conducted to validate and optimize the static simulation accuracy. To accurately evaluate and effectively optimize dynamic performance of the machine tool in the virtual environment, the critical modal parameters such as damping and stiffness are calibrated based on experimental procedures which results in precise setup of the frequency response models. Computational Fluid Dynamic (CFD) analysis model is built in the environment so that the thermal perspective of the machine tool is evaluated and thermal deformation is monitored. This paper demonstrates compatibility of the digital simulation with physical experiments and success in integrating theoretical simulation processes with practical Mori Seiki machine tool development.

Author(s):  
TJ Li ◽  
XH Ding ◽  
K Cheng ◽  
T Wu

Natural frequencies and modal shapes of machine tools have position-dependent characteristics owing to their dynamic behaviors changing with the positions of moving parts. It is time-consuming and difficult to evaluate the dynamic behaviors of machine tools and their machining accuracy at different positions. In this paper, a Kriging approximation model coupled with finite element method is proposed to substitute the dynamic equations for obtaining the position-dependent natural frequencies of a machine tool, as well as relative positions between the tool and the workpiece during the machining process. Based on the proposed method, dynamic performance optimization design of the machine tool is conducted under the condition of minimum relative positions. Three case studies are illustrated to demonstrate the implementation of the proposed method.


2011 ◽  
Vol 308-310 ◽  
pp. 1233-1237
Author(s):  
Dong Qiang Gao ◽  
Fei Zhang ◽  
Zhi Yun Mao ◽  
Huan Lin ◽  
Jiang Miao Yi

The aluminum alloy honeycomb structure used in the structural design of high-speed machine tool table to reduce the worktable’s quality, so that the inertial force generated from fast-moving reduced too. The new worktable and the original one both carried out static analysis and modal analysis by ANSYS Workbench respectively. From the result’s comparison, we can know that the new structure worktable’s static and dynamic performance are both better than the original one. The machine tool table’s machining accuracy has been raised.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Cheng ◽  
Can Wu ◽  
Peihua Gu ◽  
Wenfen Chang ◽  
Dongsheng Xuan

Traditional approaches about error modeling and analysis of machine tool few consider the probability characteristics of the geometric error and volumetric error systematically. However, the individual geometric error measured at different points is variational and stochastic, and therefore the resultant volumetric error is aslo stochastic and uncertain. In order to address the stochastic characteristic of the volumetric error for multiaxis machine tool, a new probability analysis mathematical model of volumetric error is proposed in this paper. According to multibody system theory, a mean value analysis model for volumetric error is established with consideration of geometric errors. The probability characteristics of geometric errors are obtained by statistical analysis to the measured sample data. Based on probability statistics and stochastic process theory, the variance analysis model of volumetric error is established in matrix, which can avoid the complex mathematics operations during the direct differential. A four-axis horizontal machining center is selected as an illustration example. The analysis results can reveal the stochastic characteristic of volumetric error and are also helpful to make full use of the best workspace to reduce the random uncertainty of the volumetric error and improve the machining accuracy.


Author(s):  
Yan-zhong Wang ◽  
Liang-wei Hou ◽  
Zhou Lan ◽  
Can-hui Wu ◽  
Qing-jun Lv ◽  
...  

In order to improve the machining accuracy and production efficiency of face-gear, a method of face-gear generating hobbing by worm is provided in this paper. The principle of face-gear hobbing worm is analyzed, and the mathematical model of the worm is presented based on the principle and the theory of meshing. Taking the hobbing needs into account, the special machine tool is provided, and the movement control method of face-gear hobbing by the worm on the machine tool is proposed. The equation of face-gear tooth surface is calculated, and the 3-D model of face-gear is established based on CATIA software. To reduce the face-gear tooth profile errors induced by ratio errors, an error analysis model of face-gear hobbing is established. The experiment is carried out, and the completed specimen is detected by Coordinate Measuring Machining (CMM). The processing parameter is amended according to the tooth flank detection results, and the maximum normal deviation of the whole tooth surface of the face-gear specimen is improved from 243.2 µm to 61.0 µm. Experiment results demonstrate that the method of face-gear hobbing by worm is an effective approach to achieve the precision face-gear with high dimensional accuracy.


Author(s):  
Yongsheng Zhao ◽  
Hongchao Wu ◽  
Congbin Yang ◽  
Ligang Cai ◽  
Zhifeng Liu

The motion accuracy of hydrostatic turntable is the key in improving the machining accuracy of heavy-duty machine tool. However, the motion accuracy of hydrostatic turntable depends not only on the offset load but also on the rotating speed of the turntable as well as the profile errors of the guide rails. In this paper, a simulation model is developed to analyze the effect of guide rail profile errors on the motion accuracy of hydrostatic turntable. The reaction forces of preload thrust bearing and hydrostatic circular oil pads are obtained based on the Reynolds equation of the lubricant film. The motion equations of hydrostatic turntable are derived in which the profile errors of two guide rails are considered. The results show that the motion accuracy of hydrostatic turntable can be affected by wavelength, amplitude of profile errors and speed, and offset load of turntable. Finally, the motion accuracy of heavy-duty hydrostatic turntable used in XCKA28105 type turning and milling composite machine tool is obtained by using the presented method. Comparing with the experimental results, the proposed model can be used to predict the machining accuracy caused by the profile errors of guide rails for any heavy-duty hydrostatic turntable.


Author(s):  
Tengjiao Lin ◽  
Daokun Xie ◽  
Ziran Tan ◽  
Bo Liu

The aim of this paper is to investigate the influence of structure parameters on the vibration characteristics and improve the dynamic performance of marine gearbox. A finite element model was established to solve the dynamic response by using modal superposition method. Based on the theory of multi-objective optimization design, the structure sensitivity analysis model of marine gearbox was established, which takes the structure parameters of the housing as design variables. The modal and response sensitivity was obtained by using the optimal gradient method. According to the results of sensitivity analysis, a modal and response optimization model of marine gearbox was established. The objective was to avoid natural frequencies from the excitation frequencies and minimize the root mean square of vibration acceleration of the evaluating points on the surface of housing. Then the modal optimization and response optimization of gearbox were carried out by using zero-order and first-order optimization method. The results indicate that the dynamic optimization of the gearbox can be achieved. After optimization, the amplitude of vibration acceleration of the evaluating points on the housing surface has been reduced and the resonance of marine gearbox can be avoided.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


2014 ◽  
Vol 915-916 ◽  
pp. 31-34
Author(s):  
Qing Ping Zhang ◽  
Zheng Ru Wang ◽  
Yan Fang Wang

Vibration is one of the most important problems in laser cutting machine tool, which causes the manufacturing errors, also influences the machining accuracy of the parts. Modal analysis can calculate vibration type of structures. The paper presents how to use the powerful FEA software ANSYS to do the modal analysis on laser cutting machine tool and also studies the undamped free vibration on laser cutting machine tool. Finally, the test results and theoretical results were compared to verify the rationality of the modal, these provide theoretical base and conditions for dynamics analysis and optimal design.


2014 ◽  
Vol 538 ◽  
pp. 91-94
Author(s):  
Wei Ping Luo

A virtual prototype model of Machine Tool has been constructed by using the Pro/E software and the ANSYS software. Considering the effects of contact surfaces, dynamic analyses of Machine Tool are studied. The effects of contact surfaces on the dynamic characteristics of machine tool are studied. So that the purpose predicting and evaluating synthetically the machine tool dynamic performance without a physical sample can be achieved.


Sign in / Sign up

Export Citation Format

Share Document