Experimental Study of Free Convection Heat Transfer From a Fin Attached Cylinder Confined Between Tilt and Low Conductive Plates

Author(s):  
Amir Abbas Rezaei ◽  
Masoud Ziabasharhagh ◽  
Tooraj Yousefi ◽  
Mehran Ahmadi

Steady state and two-dimensional natural convection heat transfer flow around a horizontal and isothermal cylinder with a longitudinal fin attached to it that is located between two tilt and very low conductive plates is studied experimentally by using a Mach-Zehnder interferometer. Effects of the plates slope angel (θ) on heat transfer from the tube is investigated for Rayleigh number ranging from 1000 to 15500. Experiments are done for a fin attached cylinder placed between two low conductive plates. Two different diameter tubes with diameters of D=10 and 20mm are utilized for broad Rayleigh number range. Results specify that, heat transfer experience differs for special Rayleigh numbers. For Rayleigh numbers ranging less than 5500, rate of heat transfer amount from the cylinder surface is less than that of a lone cylinder and it’s the result of no slip boundary condition on the fin surface. For this range of Rayleigh number by the use of plates, heat transfer from the cylinder surface decreases slightly and plates leaning does not alter heat transfer speed from the cylinder surface. For Rayleigh number ranging from 5500 to 15500, heat transfer rate from the cylinder surface is lower than the heat transfer rate from the surface of an individual cylinder. Though, by adding placing the low conductive plates as plates to experimental model, heat transfer system differs and chimney effect between fin and the plates increases the heat transfer from the cylinder surface. By increasing the plates slope angel from 0° to 20°, the chimney effect between plates and fin weakens and heat transfer rate from the tube surface is going to the amount of heat transfer rate from a fin attached cylinder which is not placed between plates.

Author(s):  
Pooyan Razi ◽  
Behnam Moghadassian ◽  
Hossein Shokouhmand

In this paper, a numerical solution method (finite volume) has been applied to investigate the effect of conductive and non-conductive flow diverters on free convection heat transfer from a vertical array of horizontal isothermal cylinders. Cylinder vertical spacings (center to center distance = S) of 2D, 3D and 4D has been investigated, which D is the cylinder diameter. Rectangular plate diverters have been placed between cylinders. Diverters are tilted at different angels with respect to horizon. The calculation has been done for various Rayleigh numbers based on the cylinder-diameter in the range between 103 and 104. The results show that in the case of 2D cylinder spacing, both conductive and non-conductive flow diverters decrease the heat transfer rate of cylinders at low Rayleigh numbers. However, as the distance between the cylinders increases to 3D and 4D, adding flow diverters leads to an increase in the heat transfer rate of the array. Also, in the cases of 3D and 4D spacing, the use of non-conductive flow diverters results in more increase in heat transfer rate in comparison with the rate of heat transfer resulted by applying conductive diverters.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Janusz T. Cieśliński ◽  
Slawomir Smolen ◽  
Dorota Sawicka

The results of experimental investigation of free convection heat transfer in a rectangular container are presented. The ability of the commonly accepted correlation equations to reproduce present experimental data was tested as well. It was assumed that the examined geometry fulfils the requirement of no-interaction between heated cylinder and bounded surfaces. In order to check this assumption recently published correlation equations that jointly describe the dependence of the average Nusselt number on Rayleigh number and confinement ratios were examined. As a heat source served electrically heated horizontal tube immersed in an ambient fluid. Experiments were performed with pure ethylene glycol (EG), distilled water (W), and a mixture of EG and water at 50%/50% by volume. A set of empirical correlation equations for the prediction of Nu numbers for Rayleigh number range 3.6 × 104 < Ra < 9.2 × 105 or 3.6 × 105 < Raq < 14.8 × 106 and Pr number range 4.5 ≤ Pr ≤ 160 has been developed. The proposed correlation equations are based on two characteristic lengths, i.e., cylinder diameter and boundary layer length.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
A. Tamayol ◽  
K. Hooman

Using a thermal resistance approach, forced convection heat transfer through metal foam heat exchangers is studied theoretically. The complex microstructure of metal foams is modeled as a matrix of interconnected solid ligaments forming simple cubic arrays of cylinders. The geometrical parameters are evaluated from existing correlations in the literature with the exception of ligament diameter which is calculated from a compact relationship offered in the present study. The proposed, simple but accurate, thermal resistance model considers: the conduction inside the solid ligaments, the interfacial convection heat transfer, and convection heat transfer to (or from) the solid bounding walls. The present model makes it possible to conduct a parametric study. Based on the generated results, it is observed that the heat transfer rate from the heated plate has a direct relationship with the foam pore per inch (PPI) and solidity. Furthermore, it is noted that increasing the height of the metal foam layer augments the overall heat transfer rate; however, the increment is not linear. Results obtained from the proposed model were successfully compared with experimental data found in the literature for rectangular and tubular metal foam heat exchangers.


2013 ◽  
Vol 117 (1195) ◽  
pp. 943-957 ◽  
Author(s):  
G. E. Dorrington

AbstractPrediction of the buoyancy of a thermal balloon, or Montgolfière, intended to float in the atmosphere of Titan is discussed. A laboratory based experiment designed to measure the buoyant lift of an electrically-heated, single-wall, natural-shape balloon is described. The experimental results presented closely match an analytical model employing established heat transfer correlations with selected parameter values. When the model is extrapolated to the cryogenic conditions representative of Titan’s lower troposphere, using the same correlations and parameters, the estimated buoyancy is found to be substantially higher than has been previously predicted. To account for the buoyancy difference, it is suggested that the internal free convection heat transfer rate is significantly lower than has been assumed in previous studies. To substantiate this result, it is recommended that further experiments should be performed at higher Rayleigh numbers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kun Zhang ◽  
Yu Zhang ◽  
Xiaoyu Wang ◽  
Liangbi Wang

Detailed numerical calculations are performed for investigating the effect of fin number and position on unsteady natural convection heat transfer in internally finned horizontal annulus. The SIMPLER algorithm with Quick scheme is applied for solving the Navier Stokes equations of flow and heat transfer. The results show that the heat transfer rate in annulus with fins increases with the increasing numbers of fin and Rayleigh numbers. For Ra = 2 × 105, the effect of numbers of fins and fins position at the bottom part on the unsteady solutions can be neglected, because the self-oscillation phenomenon is mainly affected by natural convection at the upper part of annulus. Although the fin positions cannot increase heat transfer rate significantly in the case of four fins, the self-oscillated solutions can be suppressed by altering fins position.


1985 ◽  
Vol 107 (3) ◽  
pp. 624-629 ◽  
Author(s):  
M. J. Chamberlain ◽  
K. G. T. Hollands ◽  
G. D. Raithby

Measurements of the heat transfer by natural convection from isothermal bodies to air are reported and compared to the predictions of the method proposed by Raithby and Hollands [7, 8]. The bodies tested were the cube in various orientations and a body consisting of two touching spheres (a bisphere). The experimental Rayleigh number range extended from 10 to 107. The experimental method incorporated measuring the heat transfer by the transient method and varying the Rayleigh number by varying the pressure. The predictions agreed with the measurements to within an average error of about 3 percent. The results are correlated by single equations, which can be extended to fluids other than air.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 990
Author(s):  
Lingyun Zhang ◽  
Yupeng Hu ◽  
Minghai Li

Natural convection heat transfer in a porous annulus filled with a Cu nanofluid has been investigated numerically. The Darcy–Brinkman and the energy transport equations are employed to describe the nanofluid motion and the heat transfer in the porous medium. Numerical results including the isotherms, streamlines, and heat transfer rate are obtained under the following parameters: Brownian motion, Rayleigh number (103–105), Darcy number (10−4–10−2), nanoparticle volume fraction (0.01–0.09), nanoparticle diameter (10–90 nm), porosity (0.1–0.9), and radius ratio (1.1–10). Results show that Brownian motion should be considered. The nanoparticle volume fraction has a positive effect on the heat transfer rate, especially with high Rayleigh number and Darcy number, while the nanoparticle diameter has an inverse influence. The heat transfer rate is enhanced with the increase of porosity. The radius ratio has a significant influence on the isotherms, streamlines, and heat transfer rate, and the rate is greatly enhanced with the increase of radius ratio.


2020 ◽  
Vol 17 (2) ◽  
pp. 89-99
Author(s):  
Houssem Laidoudi

The governing equations of continuity, momentum and energy are numerically solved to study the laminar natural convection heat transfer of Newtonian fluid confined within two concentric cylinders. The inner cylinder is elliptical cross-section with different aspect ratio E = 0.1 to 0.5 and it is considered to be hot, whereas the outer cylinder is circular and it is supposed to be cold.    The annular spacing between the cylinders is defined based on radii ratio (RR = 2.5). Also, the inner cylinder is inclined with an inclination angle (θ = 0 to 90). The main purpose of this study is to determine the effects of inclination angle (θ = 0° to 90°), aspect ratio of inner cylinder (E = 0.1 to 0.5), Prandtl number (Pr = 0.71 and 7.01) and Rayleigh number (Ra = 103 to 105) on fluid flow and heat transfer rate. The flow patterns and temperature distributions are potted in terms of streamlines and isotherms respectively. The obtained results showed that increase in inclination angle enhances the heat transfer rate of inner cylinder for all values of aspect ratio. Also, for the inclination angle          (θ = 90°), the decrease in aspect ratio (E) improves the heat transfer rate of inner cylinder.


Sign in / Sign up

Export Citation Format

Share Document