Vibration Response Behaviour of a High Solidity, Low Rotational Velocity, Vertical Axis Wind Turbine

Author(s):  
Kevin W. McLaren ◽  
Stephen W. Tullis ◽  
Samir Ziada

A series of full scale experimental wind tunnel tests were performed to determine the aerodynamic loading behaviour on the airfoils of a high solidity, low rotational velocity, 3 bladed H-type vertical axis wind turbine. The primary vibration response was resonance excitation of the dominant whirling mode of the turbine. However, for a significant number of test cases, resonance behaviour was also observed in the bending strains of the airfoil support struts, primarily corresponding to higher natural frequencies. Furthermore, under various test conditions, vibration amplitude within the support struts was observed to change dramatically during a single test run, suggesting that the vibration was jumping between sets of airfoil support struts in a complex beating mode. In order to isolate the numerous vibration excitation and response behaviours, tests were performed over a range of flow velocities from 8 m/s to 11 m/s with two different support shaft end conditions.

2018 ◽  
Vol 7 (4.38) ◽  
pp. 1395 ◽  
Author(s):  
Kadhim H. Suffer ◽  
Yassr Y. Kahtan ◽  
Zuradzman M. Razlan

The present global energy economy suggests the use of renewable sources such as solar, wind, and biomass to produce the required power. The vertical axis wind turbine is one of wind power applications. Usually, when the vertical axis wind turbine blades are designed from the airfoil, the starting torque problem begins. The main objective of this research is to numerically simulate the combination of movable vanes of a flat plate with the airfoil in a single blade configuration to solve the starting torque problem. CFD analysis in ANSYS-FLUENT and structural analysis in ANSYS of combined blade vertical axis wind turbine rotor has been undertaken. The first simulation is carried out to investigations the aerodynamic characteristic of the turbine by using the finite volume method. While the second simulation is carried out with finite element method for the modal analysis to find the natural frequencies and the mode shape in order to avoid extreme vibration and turbine failure, the natural frequencies, and their corresponding mode shapes are studied and the results were presented with damping and without damping for four selected cases. The predicted results show that the static pressure drop across the blade increase in the active blade side because of the vanes are fully closed and decrease in the negative side because of the all the vanes are fully open. The combined blade helps to increase turbine rotation and so, thus, the power of the turbine increases. While the modal results show that until the 5th natural frequency the effect of damping can be neglected. The predicted results show agreement with those reported in the literature for VAWT with different blade designs.   


2021 ◽  
pp. 0309524X2110295
Author(s):  
Román-Sedano A. Monzamodeth ◽  
Román-Roldán Nicolás Iván ◽  
Xosocotla Oscar ◽  
Hernández-Morales Bernardo ◽  
Flores Osvaldo ◽  
...  

The design, construction, and development of micro-turbines using 3D printing has been an important advance in the wind energy field to explore the possibility of offering viable alternative for the electric power generation, reducing the pollution caused by fossil fuels. In this work, a five blade vertical axis wind turbine prototype was tested. The components were designed using CAD and the turbine was manufactured by additive technology in a 3D printer. The material employed for 3D printing was commercial polylactic acid. The mechanical properties of the material used were obtained by tensile tests under the ASTM D-638 standard. On the other hand, a static structural simulation was performed by finite element method. Maximum tensile stress safety factor, maximum principal stresses, and fatigue analyses of the main turbine components were computed. The turbine performance as function of rotational velocity and relative wind velocity was analyzed implementing an experimental set-up.


2020 ◽  
Vol 36 (5) ◽  
pp. 585-593
Author(s):  
Y. Y. Niu ◽  
P. J. Shih ◽  
S. C. Kong

ABSTRACTIn this study, the aerodynamic characteristics of a vertical-axis wind turbine blade coupled with a high-lift device, such as the Gurney flap at the trailing edge, are investigated. For numerical analysis, the force element theory is used to understand how the Gurney flap influences the force evolution of the lift-type vertical-axis wind turbine. This study shows that the lift and drag can be respectively approximated into four elements, which are induced by volume vorticity, rotational velocity, angular acceleration and surface friction of the flow around the blades. Based on the perspective of the force element theory, the present simulation provides a clear picture of how the Gurney flap influences the formation of the aerodynamic force elements during a rotational cycle for a vertical-axis wind turbine. Simulation results show that the contributions mainly result from the surface vorticities, the rotational acceleration of the airfoil, and the acceleration of the surface.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


2017 ◽  
Author(s):  
Prof. R.K. Bhoyar ◽  
Prof. S.J. Bhadang ◽  
Prof. N.Z. Adakane ◽  
Prof. N.D. Pachkawade

Sign in / Sign up

Export Citation Format

Share Document