Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor

Author(s):  
Hark-Jin Eum ◽  
Shin-Hyoung Kang

Effects of tip clearance on through flows and performance of a centrifugal compressor impeller with six different tip clearances were numerically studied using CFX-TASCflow. The flow structures inside the impeller of a centrifugal compressor were visualized observing streamlines starting the leading edge of blade tips. The calculated results at the impeller exit were circumferential averaged for quantitative discussion. Flow, pressure and entropy contours at the impeller exit were largely influenced by the tip leakage flow. Tip clearance effect on the performance was decomposed into inviscid and viscous components using one-dimensional relations expressed in terms of the specific work reduction and the additional entropy generation. Both inviscid and viscous effects affected performance to similar extent, while efficiency drop was mainly influenced by viscous loss of the tip leakage flow. Performance reduction and efficiency drop due to tip clearance was proportional to the ratio of tip clearance to blade height. A simple model suggested in the present study predicts performance and efficiency drop quite successfully.

Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Author(s):  
Ce Yang ◽  
Botai Su ◽  
Li Fu ◽  
Hang Zhang

Abstract Tip leakage flow (TLF) patterns, which affect compressor performance, are closely related to compressor stability. To date, minimal attention has been given to circumferential nonuniformity of the TLF in a centrifugal compressor with a nonaxisymmetric volute structure. In this study, the circumferential difference of the TLF in a centrifugal compressor with a volute during the stall process is analyzed. The circumferential nonuniformity of tip leakage vortex (TLV) trajectories, loading distribution near the tip, and distance between the TLV core and the leading edge (LE) of splitter blades were also investigated. It is shown that in the circumferential direction, there are two peaks associated with the angle (α) between the TLV trajectory of the seven main blades and the axial direction. As the stall process progresses, the blade whose LE is affected by the high static pressure band (PP) induced by the volute tongue (VT) loses its work capacity first and the α difference between this blade and the other blades increases. In addition, the tip loading and TLF velocity of the blade whose LE is affected by the high static pressure band induced by the VT are at a minimum, and the flow loss in the tip clearance is higher. There is a phenomenon of the TLV breakdown. When the blade trailing edge (TE) is located in the low static pressure region, TLV streamlines appear as a significant turn at the breakdown point. However, the TLV streamlines at other circumferential positions do not exhibit this phenomenon.


Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang

A low speed axial compressor with casing treatment of axial slots was numerically investigated. Time-accurate numerical calculations were performed to simulate unsteady flow in the rotor tip region and the effects of casing treatment on the flow. Since the compressor rotor had a large tip clearance, it was found that the tip leakage flow had an inherent unsteady feature that was not associated with rotor rotation. The unsteadiness of the tip leakage flow was induced by changes in the blade loading due to the pressure distribution formed by the tip leakage flow. This characteristic is called rotating instability or self-induced unsteadiness. The frequency of the flow oscillation was found to decrease as the flow rate was reduced. On the other hand, as expected, the operating range was improved by casing treatment, as shown by calculations in good agreement with the experimentally measured data. The unsteadiness of the tip leakage flow was alleviated by the casing treatment. The interaction between the flow in the tip region and the re-circulated flow through the axial slots was observed in detail. The removal and injection of flow through the axial slots were responsible not only for the extension of the operating range but also for the alleviation of the unsteadiness. Analyses of instantaneous flow fields explained the mechanism of the interaction between the casing treatment and the unsteady oscillation of the tip leakage flow. Furthermore, the effects of changes in the amount of re-circulation and the location of the removal and injection flow on the unsteadiness of the tip leakage flow were examined.


Author(s):  
Yunfeng Fu ◽  
Fu Chen ◽  
Cong Chen ◽  
Yanping Song

A novel leakage flow control strategy with honeycomb seal applied on the tip of the rotor blades in a highly-loaded turbine cascade is proposed. The numerical method is used to study the tip leakage flow in a highly-loaded turbine cascades with flat tip and with honeycomb seal structure, the mechanism of honeycomb tip on inhibiting leakage flow is analyzed, the influence of various relative gap heights is also been investigated. The discussions of the action of the honeycomb-tip structure in reducing leakage flow and improving the turbine efficiency provide the according for control methods of tip leakage flow. Through the comparative study among three different tip structures of honeycomb tip, honeycomb casing and flat tip, the results show that both honeycomb tip and honeycomb casing inhibit the leakage flow effectively, but honeycomb tip has positive effect on reducing the flow loss in cascade. For the cascade with honeycomb tip, on one hand, the vortices rolled up in the regular hexagon honeycomb cavities dissipate the energy of the tip leakage flow, and the range of influence of the vortices is nearly one third of the tip clearance height. On the other hand, the radial jets caused by the honeycomb obstruct the tip leakage flow like a “pneumatic fence”, resulting in weaker leakage flow and less leakage flow rate. Besides, the honeycomb tip reduces the scale of the leakage vortex, thus the leakage loss also decreases. Compared with the flat tip cascade at the clearance height of 1%H, the honeycomb tip cascade with the same clearance height obtains decrease of the leakage flow rate and leakage flow speed in circumference by 10.16% and 20%. As a result, the leakage vortex in honeycomb tip cascade is undermined, the loss is reduced by nearly 4.43%. Considering the abradable property of the honeycomb seal that can protect the blade tips from damage, the cascade with honeycomb tip structure can obtain a smaller clearance height and achieve better sealing effect. Compared to cascade with the flat tip at the clearance height of 2%H, the amount of leakage flow using inlet flow in the honeycomb tip cascades decreases by 17.33%, 36.63% and 54.79% at the clearance heights of 2%H, 1.5%H and 1%H, the losses related to the leakage flow is reduced by nearly 5.71%, 14.33% and 25.24%, respectively.


Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Wei Yan ◽  
Chao Yin ◽  
...  

To deepen the knowledge of tip leakage flow/vortex flow structure in the tip clearance of axial compressor rotors, this paper presents steady numerical studies on a subsonic rotor. The rotor and its related low-speed large-scale repeating-stage axial compressor are used for low-speed model testing of a modern high-pressure compressor. Results were first compared with available experimental data to validate adopted numerical method. Then complex endwall flow structure and flow loss mechanism at design operating point were studied. At last, comparisons were made for tip leakage vortex structure, interface of the leakage flow/main flow, endwall blockage and loss between design and near-stall operating points. Results show that only the spilled flows below 62.5% clearance height at the leading edge will roll into tip leakage vortex for this rotor. In addition, tip leakage vortex plays a secondary important role for higher positions, where secondary leakage flow occurs and occupies broader chordwise range. Although tip leakage vortex would expand and strongly mix with the mainflow when it propagates downstream, which leads to a rapid reduction of the normalized streamwise vorticity, the value of the normalized helicity shows that concentrated vortex feature is still maintained.


Author(s):  
Hui Li ◽  
Xinrong Su ◽  
Xin Yuan

The tip leakage flow passed over the tip clearance makes the flow very complicated near the tip gap, and the interaction of the tip leakage vortex and endwall vortex enhances the instability of the flow. Accurately capturing detailed flow structures and investigating the relationship between the flow structures and loss are beneficial for understanding the flow physics and providing guidance on reducing the loss. Due to the conventional Reynolds Averaged Navier-Stokes (RANS) methods is limited to predict the complex turbulence structures of the tip clearance flow, high fidelity simulation approaches are needed. In this work, the hybrid RANS/Large Eddy Simulation (LES) is adopted to simulate the tip leakage flow in linear cascade and demonstrates its ability to capture the small-scale flow structures. With the POD method, the time-averaged flow field and the dominating modes are obtained. Based on the analysis of the POD modes, it is found that the induced vortex generated by the interaction between the leakage vortex and the endwall vortex has strong turbulence characteristics. Based on the entropy generation rates, viscous loss mechanism is further analyzed. It is found that the shear strain rates dominate the viscous dissipation losses, and the fluctuation dissipation has a strong local enhancement effect.


Author(s):  
John Moore ◽  
Joan G. Moore

A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.


Author(s):  
Fadil Mumic ◽  
Daniel Eriksson ◽  
Bengt Sunde´n

A numerical study has been performed to simulate the tip leakage flow and heat transfer on the first stage of a high-pressure turbine, which represents a modern gas turbine blade geometry. The low Re k-ω (SST) model is used to model the turbulence. Calculations are performed for both a flat and a squealer blade tip for three different tip gap clearances. The computations were carried out using a single blade with periodic conditions imposed along the boundaries in the circumferential (pitch) direction. The predicted tip heat transfer and static pressure distributions show reasonable agreement with experimental data. It was also observed that the tip clearance has a significant influence on local tip heat transfer coefficient distribution. The flat tip blade provides a higher overall heat transfer coefficient than the squealer tip blade.


Author(s):  
Mohsen Hassanvand ◽  
Wang Song Tao ◽  
Feng Guo Tai ◽  
Wang Zhong Qi

Further improvements of flow in tip clearance demand a better understanding of its complex structure and this would not be possible if we are not able to provide an interpretative or a more realistic presentation of its main effects, i.e., viscous dissipation and mixing. To do so and to gain further insights into the details and distribution of viscous dissipation, a commercial N-S solver has been employed for simulation and investigation of the unsteady flow field inside the tip clearance of a turbine rotor in first stage. The main objective of this paper is to introduce the direct implementation of dissipation function for viscous dissipation assessment in tip leakage flow. This idea seems to be the simplest and at the same time, the most straightforward approach to simulate and calculate the viscous dissipation caused by viscous effects. It is shown that the dissipation function can be employed as a strong and convenient tool in direct identification and assessment of regions of high viscous dissipation. It has been found that in tip leakage flow, regions of high viscous effects are located near casing rather than blade tip. Near casing, leakage flow creates a source point in pressure side and a sink point in suction side on rotor blade tip projection on the casing. It is shown that the time-averaged viscous dissipation in tip leakage flow is dissimilar for rotor blades. This result, which is caused by flow unsteadiness, is a helpful hint that can be taken by blade designers to design non-uniform rotor blades, that is, to design blades with different geometries and aerodynamic loads, both circumferentially and radially, to minimize the viscous dissipation. The casing passage vortex, the end wall boundary layers, and the wakes from the upstream stator significantly enhance the unsteadiness of the flow to the tip region of rotor blades. Results indicate that there exists a strong interaction between leakage flow and annulus-wall boundary layer.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document