Quantitative Hot-Wire Measurements in Supersonic Boundary Layers

Author(s):  
Eric H. Matlis ◽  
Thomas C. Corke

Mean and time-resolved measurements in a supersonic boundary layer were performed in the Mach 3.5 quiet tunnel facility at the NASA Langley Research Center. This facility uses an annular bleed suction system to remove the turbulent boundary layer, thus reducing the disturbance intensities in the measurement region. A frequency-compensatedconstant current hot-wire anemometer was used to obtain fluctuation data in the boundary layer of a sharp cone at zero angle of attack. The hotwire was calibrated against the mean mass-flux profiles provided by solutions of the similarity profiles for compressible Blasius flow. A stability analysis code provided by Langley was used to solve parabolized stability equations to provide predictions of the most amplified wave-numbers, frequencies, and N-factors for the Tollmien-Schlicting instability. The results from these computations are compared to the experimental measurements performed with the anemometer. In addition, these measurements are compared to spectra obtained in high-disturbance conditions with the bleed system turned off.

2009 ◽  
Vol 4 (3) ◽  
pp. 43-49
Author(s):  
Dmitriy Buntin ◽  
Anatoliy Maslov ◽  
Timur Chimytov ◽  
Aleksandr Shiplyuk

Experimental investigation of nonlinear stage of the transition to turbulence in a hypersonic boundary layer is presented. The experiments were carried out in a hypersonic wind tunnel T-326 at the Institute of theoretical and applied mechanics SB RAS. The model was a sharp cone with porous surface. Using the statistical analysis of the signals obtained by means of hot-wire it was shown that skewness and kurtosis distribution in a boundary layer on both solid and porous surface are in a qualitative agreement. At the same time the growing of skewness and kurtosis on a porous surface was shown. Analysis of mean voltage and rms voltage pulsation profiles of the hot-wire sensors showed that there is a delay of the laminar-turbulent transition on a porous surface.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


2005 ◽  
Vol 4 (3) ◽  
pp. 353-362
Author(s):  
Nickolay V. Semionov ◽  
Alexander D. Kosinov

An experimental study of the controlled disturbance field, introduced into the free stream with the help of the local source of disturbances, was carried out. The controlled disturbances were excited in the supersonic boundary layer by using a local disturbance generator designed based on the amount of discharge in the chamber in the plate. This process was accompanied by radiation of controlled disturbances into the free stream. This radiation from the system “discharge-boundary layer” was used as controlled disturbances in the free stream. The acoustic nature of the radiation was obtained. The levels, wave characteristics and modes of the artificial fluctuations have been obtained by hot-wire measurements in the free stream of the supersonic wind tunnel at a Mach number of 2.


1966 ◽  
Vol 25 (4) ◽  
pp. 719-735 ◽  
Author(s):  
H. Fiedler ◽  
M. R. Head

An improved version of Corrsin & Kistler's method has been used to measure intermittency in favourable and adverse pressure gradients, and the characteristic parameters of the intermittency have been related to the form parameterHof the mean velocity profiles.It is found that with adverse pressure gradients the centre of intermittency moves outward from the surface while the width of the intermittent zone decreases. The converse is true of favourable pressure gradients, and it seems likely that at sufficiently low values ofHthe flow over the full depth of the layer is only intermittently turbulent.A new method of intermittency measurement is presented which makes use of a photo-electric probe. Smoke is introduced into the boundary layer and illuminated by a narrow beam of parallel light normal to the surface. The photoelectric probe is focused on the illuminated region and a signal is generated when smoke passes through the focal point of the probe lens. Comparison of this signal with the output from a hot-wire at very nearly the same point shows the identity of smoke and turbulence distributions.


1973 ◽  
Vol 59 (3) ◽  
pp. 593-620 ◽  
Author(s):  
T. C. Lin ◽  
S. G. Rubin

A finite-difference method recently developed to study three-dimensional viscous flow is applied here to the supersonic boundary layer on a sharp cone at moderate angles of incidence (α/θ [les ] 2, angle of attack α, cone half-angle θ). The present analysis differs from previous investigations of this region in that (i) boundary-layer similarity is not assumed, (ii) the system of governing equations incorporates lateral diffusion and centrifugal force effects, and (iii) an improved numerical scheme for three-dimensional viscous flows of the type considered here is used. Solutions are shown to be non-similar at the separation streamline with local shear-layer formation. Detailed flow structure, including surface heat transfer, boundary-layer profiles and thickness, and the formation of swirling pairwise symmetric vortices, associated with cross-flow separation, are obtained. Good agreement is obtained between the present theoretical results and the existing experimental data.


Author(s):  
K. Funazaki ◽  
Y. Kato

This study deals with extensive hot-wire probe measurements of wake-affected separation bubble on the leading edge of a test model. The purpose of the study is to investigate time-resolved response of the separation bubble to incoming wake passing. Another focus is placed on the wake effect on aerodynamic loss generated in the separated boundary layer, seeking any relationship between the suppression of the separation bubble on a cascade airfoil and aerodynamic gain due to the clocking in turbomachines. The test model has a semicircular leading edge and two flat-plates. Incoming wakes are generated by circular cylinders which are horizontally fixed in the wake generator. Several types of wake generating cylinders are used in order to change wake properties. The hot-wire measurements have revealed the time-resolved responses of the separated boundary layer to the wake passage. Effects of calmed regions just behind the moving wakes are also identified.


Author(s):  
Ken-ichi Funazaki ◽  
Takashi Kitazawa ◽  
Kazuyuki Koizumi ◽  
Tadashi Tanuma

This paper, as Part II of the study on wake-disturbed boundary layer, is aimed at investigation of the effects of free-stream turbulence on wake-induced transition of the boundary layer under a favorable pressure gradient. Hot-wire probe measurements are also made on the wake-disturbed boundary layer to obtain ensemble-averaged shape factor contours on the distance-time diagrams. These data are then used to examine how the favorable pressure gradient and the free-stream turbulence affects time-resolved behaviors of the boundary layer subjected to periodic wakes. In addition, likewise in Part I, the heat transfer data are compared with the transition model proposed by Funazaki (1996) in order to check the capability of the model under the favorable pressure gradient as well as the free-stream turbulence.


Sign in / Sign up

Export Citation Format

Share Document