Numerical Simulation for the Collision of a Vortex Ring With Solid Particles

Author(s):  
Hisanori Yagami ◽  
Tomomi Uchiyama

This study is concerned with the numerical simulation of the collision between a vortex ring and an ensemble of small glass particles. The vortex ring, convecting with the self-induced velocity in a quiescent air, collides with the particles. The Reynolds number for the vortex ring is 2600, and the particle diameters are 50 and 200μm. Immediately after the collision with the vortex ring, the 50μm particles surround the vortex ring, forming a dome. The 200μm particles disperse more due to the collision with the vortex ring. This is attributable to the centrifugal effect of the large-scale eddy. The collision between the vortex ring and the particles induces an organized three-dimensional vortical structure inside the vortex ring. It also reduces the strength of vortex ring and the convective velocity.

2013 ◽  
Vol 765-767 ◽  
pp. 514-519
Author(s):  
Min Chen ◽  
Zhi Guo Zhang

The numerical simulation of the developing turbulent flow through a three-dimensional curved pipe with strong curvature is presented. This numerical simulation is to investigate the flow structure of pipe-flow through a 90° bent pipe with the aid of RNG k-ε turbulence model, which had been well validated for high screwed curvature flow. Dean Motion downstream of the bend are found and presented. And the numerical result demonstrates that Dean motions co-exist with large scale swirling motions inside the bend pipe. Snapshot of velocity and pressure reveals that the structures found upstream of the bend persist after the bend and survive the strong secondary motions induced by the pipe curvature.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2010 ◽  
Vol 24 (13) ◽  
pp. 1349-1352 ◽  
Author(s):  
TIANBAO MA ◽  
CHENG WANG ◽  
GUANGLEI FEI ◽  
JIANGUO NING

In this paper, a parallel Eulerian hydrocode for the simulation of large scale complicated explosion and impact problem is developed. The data dependency in the parallel algorithm is studied in particular. As a test, the three dimensional numerical simulation of the explosion field in an unlimited atmosphere is performed. The numerical results are in good agreement with the empirical results, indicating that the proposed parallel algorithm in this paper is valid. Finally, the parallel speedup and parallel efficiency under different dividing domain areas are analyzed.


Author(s):  
Roger G. Harrison ◽  
Paul W. Todd ◽  
Scott R. Rudge ◽  
Demetri P. Petrides

Crystallization is the process of producing crystals from a homogeneous phase. For biochemicals, the homogeneous phase from which crystals are obtained is always a solution. Crystallization is similar to precipitation in that solid particles are obtained from a solution. However, precipitates have poorly defined morphology, while in crystals the constituent molecules are arranged in three-dimensional arrays called space lattices. In comparison to crystallization, precipitation occurs at much higher levels of supersaturation and rates of nucleation but lower solubilities. These and other differences between crystallization and precipitation are highlighted in Table 9.1. Because of these differences and because the theory of crystallization that has been developed is different from that for precipitation, crystallization is considered separately from precipitation. Crystallization is capable of producing bioproducts at very high purity (say, 99.9%) and is considered to be both a polishing step and a purification step. Polishing refers to a process needed to put the bioproduct in its final form for use. For some bioproducts, such as antibiotics, this final form must be crystalline, and sometimes it is even necessary that a specific crystal form be obtained. In some instances, the purification that can be achieved by crystallization is so significant that other more expensive purification steps such as chromatography can be avoided. There are actually two very different applications of crystallization in biotechnology and bioproduct engineering: crystallization for polishing and purification, and crystallization for crystallography. In the latter case, the goal is a small number of crystals with good size (0.2–0.9 mm) and internal quality. Although it has become common to crystallize proteins for characterization of their three-dimensional structure by x-ray diffraction, this is performed only at small scale in the laboratory, and the knowledge about how to crystallize proteins at large scale in a production process is less developed. However, many antibiotics and other small biomolecules are routinely crystallized in production scale processes. This chapter is oriented toward the use of crystallization in processes that can be scaled up.


Sign in / Sign up

Export Citation Format

Share Document