scholarly journals Study on Fluorine Pollution in a Slag Yard

2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.

2020 ◽  
Vol 8 (2) ◽  
pp. 138
Author(s):  
Stanisław Gucma ◽  
Marcin Przywarty ◽  
Jan Dzwonkowski ◽  
Mateusz Bilewski

The article presents a new kinematic method of numerical simulation intended for establishing dimensions of safe manoeuvring areas of bends in various types of fairways for vessels of specific parameters. The method consists of multiple numerical simulations of a ship’s passage (ship’s centre of gravity) through a bend, representing the entire physically possible movement of the ship, and an analysis of simulation results. The developed method was verified on the bends of the Świnoujście–Szczecin fairway, by comparing the results to the exact simulation method of a ship’s movements. The relatively high accuracy and low costs of the method allow it to be used in a concept design of built or modern waterway systems.


2020 ◽  
Vol 12 (1) ◽  
pp. 1286-1301
Author(s):  
Yang Liu ◽  
Hongde Chen ◽  
Jun Wang ◽  
Shuai Yang ◽  
Anqing Chen

AbstractCurrently, the sedimentation process concerning the formation of the morphological changes of deltas under the action of waves has received little attention. Two numerical simulations were carried out in this study to explore the sedimentary morphological changes of deltas under wave action. In the first experiment, the morphological characteristics of river-dominated deltas and wave-dominated deltas were compared. Results showed that a wave-dominated delta was more likely to produce slender and stable rivers relative to a river-dominated delta. In the second experiment, the morphologies of wave-dominated deltas with sediments of different grain sizes were compared. Results indicated that delta morphology was not significantly correlated with the median grain size ({\phi }_{50}) of the sediment, and the average grain size of the coarser sediments ({\phi }_{25}) was an important factor affecting delta morphology. Moreover, a delta with a larger {\phi }_{25} value of the input sediment, a smaller topset gradient, and a smaller number of active river channels had a more arcuate shape. The results showed that the hydrodynamic numerical simulation method has the ability to reveal the evolution of deltas under the action of waves. The final simulation results were consistent with the actual delta data.


2012 ◽  
Vol 256-259 ◽  
pp. 2403-2406
Author(s):  
Shu Guang Jing ◽  
Xue Ping Gao ◽  
Lai Fei Jia ◽  
Li Ping Xu

Based on standard k-ε turbulence model and the VOF method for tracking free surface, hydraulic characteristics of the spillway in Gushitan Reservoir are simulated with a 3-D numerical model. The discharge capacity, water surface profiles, bottom pressure distribution and flow pattern are studied. Numerical simulation results have been in good agreement with experimental results, showing fine feasibility to study hydraulic characteristics of the spillway with the VOF method. The hydraulic characteristics acquired by the numerical simulation method can be used for spillway design.


2015 ◽  
Vol 730 ◽  
pp. 3-10
Author(s):  
Jun Du ◽  
Zhi Rong Mei ◽  
Li Lei Fu ◽  
Kui Zhang

Since numerical simulation method came out, it has caused a great importance to tunnel engineers and has been used widely. But it has been restricted in three-dimensional numerical analysis of multi-element and multi-working conditions because the out of memory of personal computer, the high cost of high-performance computer and so on. In view of this, we need to search the low-cost computing devices to solve the large-scale three-dimensional numerical simulation in tunnel engineering. After investigation and study, we have built a Linux-based PC cluster system successfully, and use it to simulate the excavation process of Xiamen Jiaheyuan underground access which is a rectangular shallow buried soft soil tunnel. The simulation results provide a basis for the construction. Linux-based PC cluster system provides a convenient and cheap solution for tunnel engineers in three-dimensional numerical simulation of multi-element and multi-working conditions.


2016 ◽  
Vol 16 (2) ◽  
pp. 33-40
Author(s):  
Y. Yin ◽  
Y. Li ◽  
K. Wu ◽  
J. Zhou

Abstract The main work of this paper focuses on the simulation of binary alloy solidification using the phase field model and adaptive octree grids. Ni-Cu binary alloy is used as an example in this paper to do research on the numerical simulation of isothermal solidification of binary alloy. Firstly, the WBM model, numerical issues and adaptive octree grids have been explained. Secondary, the numerical simulation results of three dimensional morphology of the equiaxed grain and concentration variations are given, taking the efficiency advantage of the adaptive octree grids. The microsegregation of binary alloy has been analysed emphatically. Then, numerical simulation results of the influence of thermophysical parameters on the growth of the equiaxed grain are also given. At last, a simulation experiment of large scale and long-time has been carried out. It is found that increases of initial temperature and initial concentration will make grain grow along certain directions and adaptive octree grids can effectively be used in simulations of microstructure.


2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2017 ◽  
Vol 34 (5) ◽  
pp. 1551-1571 ◽  
Author(s):  
Ming Xia

Purpose The main purpose of this paper is to present a comprehensive upscale theory of the thermo-mechanical coupling particle simulation for three-dimensional (3D) large-scale non-isothermal problems, so that a small 3D length-scale particle model can exactly reproduce the same mechanical and thermal results with that of a large 3D length-scale one. Design/methodology/approach The objective is achieved by following the scaling methodology proposed by Feng and Owen (2014). Findings After four basic physical quantities and their similarity-ratios are chosen, the derived quantities and its similarity-ratios can be derived from its dimensions. As the proposed comprehensive 3D upscale theory contains five similarity criteria, it reveals the intrinsic relationship between the particle-simulation solution obtained from a small 3D length-scale (e.g. a laboratory length-scale) model and that obtained from a large 3D length-scale (e.g. a geological length-scale) one. The scale invariance of the 3D interaction law in the thermo-mechanical coupled particle model is examined. The proposed 3D upscale theory is tested through two typical examples. Finally, a practical application example of 3D transient heat flow in a solid with constant heat flux is given to illustrate the performance of the proposed 3D upscale theory in the thermo-mechanical coupling particle simulation of 3D large-scale non-isothermal problems. Both the benchmark tests and application example are provided to demonstrate the correctness and usefulness of the proposed 3D upscale theory for simulating 3D non-isothermal problems using the particle simulation method. Originality/value The paper provides some important theoretical guidance to modeling 3D large-scale non-isothermal problems at both the engineering length-scale (i.e. the meter-scale) and the geological length-scale (i.e. the kilometer-scale) using the particle simulation method directly.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


Sign in / Sign up

Export Citation Format

Share Document