Overview of Vertical Axis Wind Turbine (VAWT) is one of the Wind Energy Application

2015 ◽  
Vol 793 ◽  
pp. 388-392
Author(s):  
Farhan Ahmed Khammas ◽  
Kadhim Hussein Suffer ◽  
Ryspek Usubamatov ◽  
Mohmmad Taufiq Mustaffa

This paper reviews the available types of wind turbine which is one of the wind energy applications. The authors intend to give investors a better idea of which turbine is suitable for a particular setting and to provide a new outlook on vertical axis wind turbines. Wind technology has grown substantially since its original use as a method to grind grains and will only continue to grow. Vertical-axis wind turbines are more compact and suitable for residential and commercial areas while horizontal-axis wind turbines are more suitable for wind farms in rural areas or offshore. However, technological advances in vertical axis wind turbines that are able to generate more energy with a smaller footprint are now challenging the traditional use of horizontal wind turbines in wind farms. Vertical axis wind turbines do not need to be oriented to the wind direction and offer direct rotary output to a ground-level load, making them particularly suitable for water pumping, heating, purification and aeration, as well as stand-alone electricity generation. The use of high efficiency Darrieus turbines for such applications is virtually prohibited by their inherent inability to self-start.

2019 ◽  
Vol 13 ◽  
Author(s):  
Li Zheng ◽  
Zhang Wenda ◽  
Han Ruihua ◽  
Qi Weiqiang

Background: In a wind farm, the wind speed of the downstream wind turbine will be lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore, the wake of wind turbines is one of the uncertain factors predicting the annual power generation of wind farms. The study of the wake can effectively improve the efficiency of power generation. The arrangement of vertical axis wind turbines in wind farms is rarely studied. Therefore, it is important to study the vertical layout of wind turbines under the influence of wakes to obtain the best layout and unit spacing. Objective: To obtain the optimal layout and unit distance of wind turbines in Senegal wind turbines by studying the arrangement of Senegal vertical axis wind turbines in wind farms. Method: Based on the ANSYS CFX flow field calculation module, the fluid dynamics model of the Senegal fan was established and the flow field simulation analysis was carried out. Based on the Jensen wake model and its improved model, three layout methods for wind farm wind turbines are proposed: two units are arranged in series, two units are arranged in parallel, and three units are staggered. Through the simulation model, the wind energy utilization coefficient and wind speed of the wind turbine in the wind farm are obtained. Results: The optimal separation distance between the units was analyzed from four different angles: wind energy utilization coefficient, torque analysis, downstream tail flow and wind speed cloud contour. Finally, based on the optimal arrangement and unit distance, a triangular staggered wind farm composed of 10 units is established, and the integrated flow field characteristics of the whole wind farm are simulated and analyzed. The integrated flow field wake characteristics of the wind farm are obtained. Conclusion: In all three arrangements, the optimum distance between the units should be three times the diameter of the wind turbine. This arrangement ensures that most of the units are unaffected by the wake, the area affected by the low velocity wake of the wind farm is small, and the area affected by the high speed wake is large.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3484
Author(s):  
Tai-Lin Chang ◽  
Shun-Feng Tsai ◽  
Chun-Lung Chen

Since the affirming of global warming, most wind energy projects have focused on the large-scale Horizontal Axis Wind Turbines (HAWTs). In recent years, the fast-growing wind energy sector and the demand for smarter grids have led to the use of Vertical Axis Wind Turbines (VAWTs) for decentralized energy generation systems, both in urban and remote rural areas. The goals of this study are to improve the Savonius-type VAWT’s efficiency and oscillation. The main concept is to redesign a Novel Blade profile using the Taguchi Robust Design Method and the ANSYS-Fluent simulation package. The convex contour of the blade faces against the wind, creating sufficient lift force and minimizing drag force; the concave contour faces up to the wind, improving or maintaining the drag force. The result is that the Novel Blade improves blade performance by 65% over the Savonius type at the best angular position. In addition, it decreases the oscillation and noise accordingly. This study achieved its two goals.


2021 ◽  
pp. 0309524X2110618
Author(s):  
Syed Abdur Rahman Tahir ◽  
Muhammad Shakeel Virk

Vertical Axis Wind Turbine (VAWT) can be a promising solution for electricity production in remote ice prone territories of high north, where good wind resources are available, but icing is a challenge that can affect its optimum operation. A lot of research has been made to study the icing effects on the conventional horizontal axis wind turbines, but the literature about vertical axis wind turbines operating in icing conditions is still scarce, despite the importance of this topic. This paper presents a review study about existing knowledge of VAWT operation in icing condition. Focus has been made in better understanding of ice accretion physics along VAWT blades and methods to detect and mitigate icing effects.


Author(s):  
I. Janajreh ◽  
C. Ghenai

Large scale wind turbines and wind farms continue to evolve mounting 94.1GW of the electrical grid capacity in 2007 and expected to reach 160.0GW in 2010 according to World Wind Energy Association. They commence to play a vital role in the quest for renewable and sustainable energy. They are impressive structures of human responsiveness to, and awareness of, the depleting fossil fuel resources. Early generation wind turbines (windmills) were used as kinetic energy transformers and today generate 1/5 of the Denmark’s electricity and planned to double the current German grid capacity by reaching 12.5% by year 2010. Wind energy is plentiful (72 TW is estimated to be commercially viable) and clean while their intensive capital costs and maintenance fees still bar their widespread deployment in the developing world. Additionally, there are technological challenges in the rotor operating characteristics, fatigue load, and noise in meeting reliability and safety standards. Newer inventions, e.g., downstream wind turbines and flapping rotor blades, are sought to absorb a larger portion of the cost attributable to unrestrained lower cost yaw mechanisms, reduction in the moving parts, and noise reduction thereby reducing maintenance. In this work, numerical analysis of the downstream wind turbine blade is conducted. In particular, the interaction between the tower and the rotor passage is investigated. Circular cross sectional tower and aerofoil shapes are considered in a staggered configuration and under cross-stream motion. The resulting blade static pressure and aerodynamic forces are investigated at different incident wind angles and wind speeds. Comparison of the flow field results against the conventional upstream wind turbine is also conducted. The wind flow is considered to be transient, incompressible, viscous Navier-Stokes and turbulent. The k-ε model is utilized as the turbulence closure. The passage of the rotor blade is governed by ALE and is represented numerically as a sliding mesh against the upstream fixed tower domain. Both the blade and tower cross sections are padded with a boundary layer mesh to accurately capture the viscous forces while several levels of refinement were implemented throughout the domain to assess and avoid the mesh dependence.


2021 ◽  
Vol 897 (1) ◽  
pp. 012001
Author(s):  
Oleg Goman ◽  
Andrii Dreus ◽  
Anton Rozhkevych ◽  
Krystyna Heti

Abstract Until recently, vertical-axis wind turbines are less extensively developed in wind energetics. At the same time, there are a number of advantages in turbines of such type like their independence from the change of wind direction, lower levels of aerodynamic and infrasound noises, higher structural reliability (compared to horizontal engines), etc. With these advantages, vertical-axis wind turbines demonstrate promising capacities. Inter alia, the productiveness of such turbines can be refined through the aerodynamic improvement of the structure and comprehensive optimization of the rotor geometry. The main purpose of the presented paper is to aerodynamically improve vertical wind turbine in order to increase the efficiency of wind energy conversion into electricity. Within the framework of the classical theory of impulses, this article presents a study of the effect of variation in Reynolds number on the general energy characteristics of a vertical-axis wind turbine with two blades. The integral approach makes it possible to use a single-disk impulse model to determine the main specific indicators of the system. The power factor was calculated based on the obtained value of the shaft torque factor, which in turn was determined by numerically integrating the total torque generated by the wind turbine. To calculate the test problem, we used the classic NACA airfoils: 0012, 0015, 0018 and 0021. The proposed calculation algorithm makes it possible not to indicate the Reynolds number and corresponding aerodynamic coefficients at the beginning of the calculation, but to recalculate it depending on the relative speed, position of the airfoil and the linear speed of the airfoil around the circumference. Proposed modern design techniques can be helpful for optimization of vertical wind turbines.


2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


2020 ◽  
Vol 38 ◽  
pp. 215-221
Author(s):  
Anna Kuwana ◽  
Xue Yan Bai ◽  
Dan Yao ◽  
Haruo Kobayashi

There are many types of wind turbine. Large propeller-type wind turbines are used mainly for large wind farms and offshore wind power generation. Small vertical-axis wind turbines (VAWTs) are often used in distributed energy systems. In previous studies on wind turbines, the basic characteristics such as torque coefficient have often been obtained during rotation, with the turbine rotating at a constant speed. Such studies are necessary for the proper design of wind turbines. However, it is also necessary to conduct research under conditions in which the wind direction and wind speed change over time. Numerical simulation of the starting characteristics is carried out in this study. Based on the flow field around the wind turbine, the force required to rotate the turbine is calculated. The force used to stop the turbine is modeled based on friction in relation to the bearing. Equations for the motion of the turbine are solved by their use as external force. Wind turbine operation from the stationary state to the start of rotation is simulated. Five parameters, namely, blade length, wind turbine radius, overlap, gap, and blade thickness, are changed and the optimum shape is obtained. The simulation results tend to qualitatively agree with the experimental results for steadily rotating wind turbines in terms of two aspects: (1) the optimal shape has an 20% overlap of the turbine radius, and (2) the larger the gap, the lower the efficiency.


Author(s):  
Zhenlong Wu ◽  
Yihua Cao

Rainfall is a common meteorological condition that wind turbines may encounter and by which their performance may be affected. This paper comprehensively investigates the effects of rainfall on a NACA 0015 airfoil which is commonly used in vertical axis wind turbines. A CFD-based Eulerian–Lagrangian multiphase approach is proposed to study the static, rotating, and oscillating performances of the NACA 0015 airfoil in rainy conditions. It is found that for the different airfoil movements, the airfoil performance can seriously be deteriorated in the rain condition. Rain also causes premature boundary layer separations and more severe flow recirculations than in the dry condition. These findings seem to be the first open reports on rain effects on wind turbine performance and should be of some significance to practical design.


2018 ◽  
Vol 42 (2) ◽  
pp. 97-107 ◽  
Author(s):  
D Cevasco ◽  
M Collu ◽  
CM Rizzo ◽  
M Hall

Despite several potential advantages, relatively few studies and design support tools have been developed for floating vertical axis wind turbines. Due to the substantial aerodynamics differences, the analyses of vertical axis wind turbine on floating structures cannot be easily extended from what have been already done for horizontal axis wind turbines. Therefore, the main aim of the present work is to compare the dynamic response of the floating offshore wind turbine system adopting two different mooring dynamics approaches. Two versions of the in-house aero-hydro-mooring coupled model of dynamics for floating vertical axis wind turbine (FloVAWT) have been used, employing a mooring quasi-static model, which solves the equations using an energetic approach, and a modified version of floating vertical axis wind turbine, which instead couples with the lumped mass mooring line model MoorDyn. The results, in terms of mooring line tension, fatigue and response in frequency have been obtained and analysed, based on a 5 MW Darrieus type rotor supported by the OC4-DeepCwind semisubmersible.


Sign in / Sign up

Export Citation Format

Share Document