scholarly journals Teaching How to Use the CFD Approach by an Example: Hydrodynamics Within a Passenger Car Compartment in Motion

2009 ◽  
Author(s):  
Geanette Polanco ◽  
Nelson Garci´a ◽  
Luis Rojas

The CDF methodology is applied to the study of the air flow around a 2-D car and its interaction with the cabin internal air. The flow visualization or computational works enable engineers to calculate different car characteristics like drag coefficient, external and internal air flow patterns, etc. Therefore, the teaching of this approach to student is a very important task to take into account in the formation process of new engineers. This work shows the numerical simulation of a specific passenger car compartment configuration solving the Navier-Stokes equations along with the k-e turbulence model using the finite volume method. The indoor air flow is produced by the interaction between the cabin inner air with the external flow through two glass windows (one in the front seat and one in the back seat). This configuration represents a common situation for the passenger car compartment. The study covers two different car speeds, 50 and 100 km/h. The flow field is studied in both steady state and transient conditions with time step of 0.01 s, for both car speeds, 50 km/h and 100 km/h. The different steps of the CFD work are commented to show to the reader the distinct states that must be cover in this kind of work. As results of the detailed methodology followed, the influence of the domain size on the flow fields is highlighted, the requirement of a better mesh quality is exposed and flow field results are analyzed using two different forms of graphic representations. The results show the physics behavior of the flow and the presence of flow structures, as for instance, indoor air recirculation zones delimited by internal seats, as well as, the vortex presence at the back of the cabin.

2016 ◽  
Vol 34 (1-2) ◽  
pp. 53-64
Author(s):  
Buddhi P. Sapkota ◽  
Kedar N. Uprety ◽  
Harihar Khanal ◽  
Prakash V. Bhave

This paper focuses on the modeling of indoor air pollution in a naturally ventilated kitchen based on the computational fluid dynamics (CFD) approach to assess its ventilation effectiveness. The 3D incompressible Navier-Stokes equations with conservation of total energy are solved numerically using ANSYS-Fluent software and the pollutant paths are investigated from the profiles of velocity, pressure, turbulent kinetic energy and temperature throughout different sections of the kitchen. Experimental verification is made through the measurement of indoor air contaminant in the same kitchen. The simulation results agree well with the on-site measured data.


1974 ◽  
Vol 96 (4) ◽  
pp. 394-400 ◽  
Author(s):  
V. A. Marple ◽  
B. Y. H. Liu ◽  
K. T. Whitby

The flow field in an inertial impactor was studied experimentally with a water model by means of a flow visualization technique. The influence of such parameters as Reynolds number and jet-to-plate distance on the flow field was determined. The Navier-Stokes equations describing the laminar flow field in the impactor were solved numerically by means of a finite difference relaxation method. The theoretical results were found to be in good agreement with the empirical observations made with the water model.


Author(s):  
Alexander Danilov ◽  
Alexander Lozovskiy ◽  
Maxim Olshanskii ◽  
Yuri Vassilevski

AbstractThe paper introduces a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a discrete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.


2016 ◽  
Vol 792 ◽  
pp. 5-35 ◽  
Author(s):  
Giuseppe A. Zampogna ◽  
Alessandro Bottaro

The interaction between a fluid flow and a transversely isotropic porous medium is described. A homogenized model is used to treat the flow field in the porous region, and different interface conditions, needed to match solutions at the boundary between the pure fluid and the porous regions, are evaluated. Two problems in different flow regimes (laminar and turbulent) are considered to validate the system, which includes inertia in the leading-order equations for the permeability tensor through a Oseen approximation. The components of the permeability, which characterize microscopically the porous medium and determine the flow field at the macroscopic scale, are reasonably well estimated by the theory, both in the laminar and the turbulent case. This is demonstrated by comparing the model’s results to both experimental measurements and direct numerical simulations of the Navier–Stokes equations which resolve the flow also through the pores of the medium.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


2011 ◽  
Vol 1 (3) ◽  
pp. 215-234 ◽  
Author(s):  
Lizhen Chen ◽  
Jie Shen ◽  
Chuanju Xu

AbstractWe propose and analyze spectral direction splitting schemes for the incompressible Navier-Stokes equations. The schemes combine a Legendre-spectral method for the spatial discretization and a pressure-stabilization/direction splitting scheme for the temporal discretization, leading to a sequence of one-dimensional elliptic equations at each time step while preserving the same order of accuracy as the usual pressure-stabilization schemes. We prove that these schemes are unconditionally stable, and present numerical results which demonstrate the stability, accuracy, and efficiency of the proposed methods.


Author(s):  
Bing Wei ◽  
Li Zhang

The energy consumption of AC (air conditioning) systems in large buildings is normally higher than the energy consumption in smaller buildings, and its indoor air flow field is also more complex than that in small building. To study the air flow mode and the indoor air flow fields in large spaces is of great significance to the energy conservation of AC systems and thermal comfort of the occupants. This paper presents an example using a large building that uses stratified air conditioning delivered through the linear slot sidewall diffusers and perforated sidewall diffusers. Using CFD simulation methods, three air flow field situations were simulated: (1) total air volume supplied from linear slot diffusers located in the middle of a side wall, (2) 50% flow through the linear slot diffusers the remainder supplied through the perforated sidewall diffusers, (3) 30% of the volume supplied with linear slot diffusers, 70% supplied through the perforated sidewall diffusers. The simulated results show that the third airflow mode is the optimal one for the three modes, which is good for achieving energy conservation and a comfortable building thermal environment in buildings with large spacial areas.


2020 ◽  
Vol 10 (22) ◽  
pp. 7952
Author(s):  
Qiang Wang ◽  
Boran Zhang ◽  
Pengyao Yu ◽  
Guangzhao Li ◽  
Zhijiang Yuan

The bow-flared section may be simplified in the prediction of slamming loads and whipping responses of ships. However, the difference of hydrodynamic characteristics between the water entry of the simplified sections and that of the original section has not been well documented. In this study, the water entry of several different bow-flared sections was numerically investigated using the computational fluid dynamics method based on Reynolds-averaged Navier–Stokes equations. The motion of the grid around the section was realized using the overset mesh method. Reasonable grid size and time step were determined through convergence studies. The application of the numerical method in the water entry of bow-flared sections was validated by comparing the present predictions with previous numerical and experimental results. Through a comparative study on the water entry of one original section and three simplified sections, the influences of simplification of the bow-flared section on hydrodynamic characteristics, free surface evolution, pressure field, and impact force were investigated and are discussed here.


Author(s):  
Bakhtier Farouk ◽  
Murat K. Aktas

Formation of vortical flow structures in a rectangular enclosure due to acoustic streaming is investigated numerically. The oscillatory flow field in the enclosure is created by the vibration of a vertical side wall of the enclosure. The frequency of the wall vibration is chosen such that a standing wave forms in the enclosure. The interaction of this standing wave with the horizontal solid walls leads to the production of Rayleigh type acoustic streaming flow patterns in the enclosure. All four walls of the enclosure considered are thermally insulated. The fully compressible form of the Navier-Stokes equations is considered and an explicit time-marching algorithm is used to explicitly track the acoustic waves. Numerical solutions are obtained by employing a highly accurate flux corrected transport (FCT) algorithm for the convection terms. A time-splitting technique is used to couple the viscous and diffusion terms of the full Navier-Stokes equations. Non-uniform grid structure is employed in the computations. The simulation of the primary oscillatory flow and the secondary (steady) streaming flows in the enclosure is performed. Streaming flow patterns are obtained by time averaging the primary oscillatory flow velocity distributions. The effect of the amount of wall displacement on the formation of the oscillatory flow field and the streaming structures are studied. Computations indicate that the nonlinearity of the acoustic field increases with increasing amount of the vibration amplitude. The form and the strength of the secondary flow associated with the oscillatory flow field and viscous effects are found to be strongly correlated to the maximum displacement of the vibrating wall. Total number of acoustic streaming cells per wavelength is also determined by the strength and the level of the nonlinearity of the sound field in the resonator.


Sign in / Sign up

Export Citation Format

Share Document