scholarly journals Modeling of Indoor Air Flow Distribution in a Naturally Ventilated Kitchen

2016 ◽  
Vol 34 (1-2) ◽  
pp. 53-64
Author(s):  
Buddhi P. Sapkota ◽  
Kedar N. Uprety ◽  
Harihar Khanal ◽  
Prakash V. Bhave

This paper focuses on the modeling of indoor air pollution in a naturally ventilated kitchen based on the computational fluid dynamics (CFD) approach to assess its ventilation effectiveness. The 3D incompressible Navier-Stokes equations with conservation of total energy are solved numerically using ANSYS-Fluent software and the pollutant paths are investigated from the profiles of velocity, pressure, turbulent kinetic energy and temperature throughout different sections of the kitchen. Experimental verification is made through the measurement of indoor air contaminant in the same kitchen. The simulation results agree well with the on-site measured data.

2009 ◽  
Author(s):  
Geanette Polanco ◽  
Nelson Garci´a ◽  
Luis Rojas

The CDF methodology is applied to the study of the air flow around a 2-D car and its interaction with the cabin internal air. The flow visualization or computational works enable engineers to calculate different car characteristics like drag coefficient, external and internal air flow patterns, etc. Therefore, the teaching of this approach to student is a very important task to take into account in the formation process of new engineers. This work shows the numerical simulation of a specific passenger car compartment configuration solving the Navier-Stokes equations along with the k-e turbulence model using the finite volume method. The indoor air flow is produced by the interaction between the cabin inner air with the external flow through two glass windows (one in the front seat and one in the back seat). This configuration represents a common situation for the passenger car compartment. The study covers two different car speeds, 50 and 100 km/h. The flow field is studied in both steady state and transient conditions with time step of 0.01 s, for both car speeds, 50 km/h and 100 km/h. The different steps of the CFD work are commented to show to the reader the distinct states that must be cover in this kind of work. As results of the detailed methodology followed, the influence of the domain size on the flow fields is highlighted, the requirement of a better mesh quality is exposed and flow field results are analyzed using two different forms of graphic representations. The results show the physics behavior of the flow and the presence of flow structures, as for instance, indoor air recirculation zones delimited by internal seats, as well as, the vortex presence at the back of the cabin.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


2010 ◽  
Vol 41 (2) ◽  
pp. 92-103 ◽  
Author(s):  
Peggy Zinke ◽  
Nils Reidar Bøe Olsen ◽  
Jim Bogen ◽  
Nils Rüther

A 3D numerical model was used to compute the discharge distribution in the channel branches of Lake Øyeren's delta in Norway. The model solved the Navier–Stokes equations with the k–ɛ turbulence model on a 3D unstructured grid. The bathymetry dataset for the modelling had to be combined from different data sources. The results for three different flow situations in 1996 and 1997 showed a relative accuracy of the computed discharges within the range of 0 to±20% compared with field measurements taken by an ADCP at 13 cross sections of the distributary channels. The factors introducing the most error in the computed results are believed to be uncertainties concerning the bathymetry. A comparison between the computational results of the older morphology data from 1985–1990 and the model morphology from 1995–2004 indicated that morphological changes in this period had already had consequences for the flow distribution in some channels. Other important error sources were the inevitable use of averaged water level gradients because of unavailable water level measurements within the delta.


2012 ◽  
Vol 184-185 ◽  
pp. 944-948 ◽  
Author(s):  
Hai Jun Gong ◽  
Yang Liu ◽  
Xue Yi Fan ◽  
Da Ming Xu

For a clear and comprehensive opinion on segregated SIMPLE algorithm in the area of computational fluid dynamics (CFD) during liquid processing of materials, the most significant developments on the SIMPLE algorithm and its variants are briefly reviewed. Subsequently, some important advances during last 30 years serving as increasing numerical accuracy, enhancing robustness and improving efficiency for Navier–Stokes (N-S) equations of incompressible fluid flow are summarized. And then a so-called Direct-SIMPLE scheme proposed by the authors of present paper introduced, which is different from SIMPLE-like schemes, no iterative computations are needed to achieve the final pressure and velocity corrections. Based on the facts cited in present paper, it conclude that the SIMPLE algorithm and its variants will continue to evolve aimed at convergence and accuracy of solution by improving and combining various methods with different grid techniques, and all the algorithms mentioned above will enjoy widespread use in the future.


2020 ◽  
Vol 35 ◽  
pp. 46-54
Author(s):  
Daniele Twardowski ◽  
Diego Alves de Miranda

With each passing day companies are looking more and more in the initial phase of the project, to understand the phenomena arising, so that in the execution of the project there are no failures, much less when the project is in operation. For this, the numerical simulation has been shown an increasingly efficient tool to assist the engineers and designers of machines and equipment. The Kaplan turbine design requires a high level of engineering expertise combined with a high level of knowledge in fluid mechanics, as poor design of a diffuser fin can lead to disordered turbulent flow which, when mixed with a high pressure drop, can cavitate into turbine blades. The aim of this study is to evaluate different types of diffuser fin profiles in the inlet at Kaplan turbines. For this, numerical computer simulation was used with the aid of the Ansys Fluent software, in which simulations of water flow in a steady state occurred. The software works with the finite volume method for the discretization of the Navier-Stokes equations. The simulations have proved to be efficient in capturing current lines and pointing out the best flow profile in a project, avoiding more complex turbine blade problems.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Getnet Kebede Demeke ◽  
Dereje Hailu Asfaw ◽  
Yilma Seleshi Shiferaw

Hydraulic structures are often complex and in many cases their designs require attention so that the flow behavior around hydraulic structures and their influence on the environment can be predicted accurately. Currently, more efficient computational fluid dynamics (CFD) codes can solve the Navier–Stokes equations in three-dimensions and free surface computation in a significantly improved manner. CFD has evolved into a powerful tool in simulating fluid flows. In addition, CFD with its advantages of lower cost and greater flexibility can reasonably predict the mean characteristics of flows such as velocity distributions, pressure distributions, and water surface profiles of complex problems in hydraulic engineering. In Ethiopia, Tendaho Dam Spillway was constructed recently, and one flood passed over the spillway. Although the flood was below the designed capacity, there was an overflow due to superelevation at the bend. Therefore, design of complex hydraulic structures using the state-of- art of 3D hydrodynamic modelling enhances the safety of the structures. 3D hydrodynamic modelling was used to verify the safety of the spillway using designed data and the result showed that the constructed hydraulic section is not safe unless it is modified.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yong Liu ◽  
Jia Li ◽  
Yu Tian ◽  
Xia Yu ◽  
Jian Liu ◽  
...  

The application of two-phase computational fluid dynamics (CFD) for simulating crater-like Taylor cone formation dynamics in a viscous liquid is a challenging task. An interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations based on Navier-Stokes equations were employed to simulate the crater-like Taylor cone formation process. The computational results of the dynamics of crater-like Taylor cone slowly formed on a free liquid surface produced by a submerged nozzle in a viscous liquid were presented in this paper. Some experiments with different air pressures were carried out to evaluate the simulation results. The results from both CFD and experimental observations were compared and analyzed. The numerical results were consistent with the experimental results. Our study showed that the CLSVOF method gave convincing results, and the computational method is robust to extreme variations in interfacial topology.


Author(s):  
Zhang Lisheng ◽  
Jiang Jin ◽  
Xiao Zhihuai ◽  
Li Yanhui

In this paper numerical simulations were conducted to analyze the effects of design parameters and distribution of balancing-hole on the axial-force of a partial emission pump. The studied pump is a single stage pump with a Barske style impeller. Based on the original impeller, we designed 7 pumps with different balancing-hole diameters and the partial emission pump equipped with different impellers were simulated employing the commercial computational fluid dynamics (CFD) software Fluent 12.1 to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed with the purpose of balancing the contradiction of numerical accuracy and the cost of calculation. The results showed that, with increasing of the capacity, the axial force varies little. The diameter of the inner balancing-hole plays a dominant role of reducing axial-force of partial emission pump, the axial-force decreases with increasing of inner balancing-hole diameter on the whole range of operation, the axial-force of impeller without inner balancing-hole is approximately 3 times larger than that of impeller with inner balancing-hole. While the diameter of outer balancing-hole has a reverse effects compared with that of inner balancing-hole. With increasing of outer balancing-hole, the axial force increases accordingly.


2011 ◽  
Vol 55-57 ◽  
pp. 343-347 ◽  
Author(s):  
Yi Gang Luan ◽  
Hai Ou Sun

In this article, computational fluid dynamics(CFD) method is used to predict the effect of blade numbers on the pressure drop of axial cyclone separators. A three-dimensional model is built to acquire the resistance of axial cyclone separators with different blade numbers. The flow field inside cyclone separators is calculated using 3D Reynolds-averaged Navier-Stokes equations. And turbulence model is used to simulate the Reynold stress. Also pressure drop of cyclone separators with different blade numbers is expressed as a function of different inlet velocities. At the same inlet velocity with increasing the blade numbers, pressure drops of cyclones reduce greatly. And changing the blade number of cyclone separator is an effective method to improve its resistance performance.


Sign in / Sign up

Export Citation Format

Share Document