Investigation of the Self-Priming Process of Self-Priming Pump Under Gas-Liquid Two-Phase Condition

Author(s):  
Guidong Li ◽  
Yang Wang ◽  
Gang Yin ◽  
Yurui Cui ◽  
Qihong Liang

The self-priming process of self-priming pump is gas-liquid two-phase flow process with complex internal transient flow. The effect of gas-liquid mixing and separating performances will play a crucial role during self-priming process. In order to study the self-priming process and improve the self-priming performance, the model named JETST-100 was selected. Based on Eulerian-Eulerian multiphase flow model, transient numerical simulation of the gas-liquid mixing and separating phenomena on the pump chamber was carried out by using CFX software. The distributions of velocity vector, contours of gas volume fraction and liquid velocity of the pump or jet aerator, and the change of the gas volume fraction by monitoring points on the jet aerator were obtained. Test and simulation results show that the gas-liquid two-phase flow from the guide vane will form a larger velocity circulation, so that the gas-liquid separation is not sufficient. And the volume fraction of liquid inside pump chamber decrease with a large amount of water enters the outlet pipe. It is found that adding the baffle plate can prevent the generation of circulation on guide vane back, the gas-phase volume fraction of jet aerator inlet and nozzle outlet decreases, improve the self-priming performance of the pump.

Author(s):  
Fan Zhang ◽  
Martin Böhle ◽  
Shouqi Yuan

Side channel pump is a kind of small volume vane pump with low flow rate but high head and most side channel pumps can transport gas–liquid two-phase flow. In order to investigate the performance of this type of pump depending on the blade suction angle under gas–liquid two-phase flow operating condition, an experimental study has been carried out. The head and efficiency curves, and the influence of blade suction angle changes on these curves for different inlet gas volume fraction states are analyzed in detail. Moreover, the gas transporting capability of the impeller with three different blade suction angles (10°, 20°, 30°) are also compared. The results show that the head and efficiency performances of the three impellers decrease a large value when the side channel pump operates with a little gas inside, and the operating range narrows as well. With the increasing of inlet gas volume fraction, the performance of the side channel pump worsens. The head and efficiency performances in the single-phase state improve by increasing the blade suction angle, but decrease by increasing the blade suction angle in the gas–liquid two-phase flow state. The maximum gas transporting capability of the impeller with a small blade suction angle is better than a large blade suction angle. Analysis on the measured data allows a better understanding of the effect of inlet gas quantity on the performance of the side channel pump with different blade suction angles, and it could supply the design reference for two-phase flow side channel pumps.


2004 ◽  
Vol 127 (2) ◽  
pp. 330-338 ◽  
Author(s):  
Shuliang Cao ◽  
Guoyi Peng ◽  
Zhiyi Yu

A combined approach of inverse method and direct flow analysis is presented for the hydrodynamic design of gas-liquid two-phase flow rotodynamic pump impeller. The geometry of impeller blades is designed for a specified velocity torque distribution by treating the two-phase mixture as a homogeneous fluid under the design condition. The three-dimensional flow in the designed impeller is verified by direct turbulent flow analysis, and the design specification is further modified to optimize the flow distribution. A helical axial pump of high specific speed has been developed. To obtain a favorable pressure distribution the impeller blade was back-loaded at the hub side compared to the tip side. Experimental results demonstrate that the designed pump works in a wide flow rate range until the gas volume fraction increases to over 50% and its optimum hydraulic efficiency reaches to 44.0% when the gas volume fraction of two-phase flow is about 15.6%. The validity of design computation has been proved.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 330 ◽  
Author(s):  
Chuan Wang ◽  
Bo Hu ◽  
Yong Zhu ◽  
Xiuli Wang ◽  
Can Luo ◽  
...  

A self-priming centrifugal pump can be used in various areas such as agricultural irrigation, urban greening, and building water-supply. In order to simulate the gas-water two-phase flow in the self-priming process of a self-priming centrifugal pump, the unsteady numerical calculation of a typical self-priming centrifugal pump was performed using the ANSYS Computational Fluid X (ANSYS CFX) software. It was found that the whole self-priming process of a self-priming pump can be divided into three stages: the initial self-priming stage, the middle self-priming stage, and the final self-priming stage. Moreover, the self-priming time of the initial and final self-priming stages accounts for a small percentage of the whole self-priming process, while the middle self-priming stage is the main stage in the self-priming process and further determines the length of the self-priming time.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Sangho Sohn ◽  
Jaebum Park ◽  
Dong-Wook Oh

A simple use of Venturi might be used to measure two-phase flow rate within relatively low GVF(gas volume fraction). Upstream flow entering Venturi can be improved with installed flow homogenizer which is easily fabricated by 3-dimensional printer with multiple holes. Simultaneous measurement between high-speed flow visualization and dynamic differential pressure measurement was made to find visual criteria for two-phase flow rate measurement with different GVF ranged from 0% to 30%. It was observed that the two-phase flow rate can be reliably measured up to 15% of GVF using flow homogenizer. FFT(Fast-Fourier Transform) results proved that the long flow homogenizers (type 2 and 4) showed a lower amplitude of differential pressure (Δp) than the short flow homogenizers (type 1 and 3) respectively. So the optimized flow homogenizer can be useful to measure two-phase flow rate at low GVF.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Michael Mansour ◽  
Trupen Parikh ◽  
Sebastian Engel ◽  
Dominique Thévenin

Abstract Inducers show generally a positive influence on the performance of centrifugal pumps in the two-phase regime, since they produce more uniform mixtures and increase the pressure before the impeller. However, the effect is much more pronounced in part-load compared to overload conditions. In this study, the air–water two-phase flow behavior in a pump inducer was numerically investigated. The main objectives were to clarify the effect of the inducer, the effective operating range, and to examine flow mixing. Several flow conditions were studied, covering part-load, optimal, and overload pumping conditions, together with different relevant gas volume fractions (1%, 3%, and 5%). The simulations were performed using a transient setup and a moving-mesh approach. Two-phase air–water interactions were modeled by the volume of fluid (VOF) method. After checking the proper discretization in space and time, the model was validated against experimental results, revealing excellent agreement. The numerical analysis was able to explain different effects of inducers in part-load and overload conditions. Under overload conditions, the flow separates, leading to the generation of axial vortices and to a negative pressure change across the inducer; additionally, the residence time is reduced, hindering mixing. These vortices are intensified as the gas volume fraction increases, reducing further the pressure downstream of the inducer. This is the reason why inducers can mainly be used in part-load and near optimal conditions in order to improve pumping of two-phase flows.


2021 ◽  
Author(s):  
Tingcheng Wu ◽  
Luis San Andrés ◽  
Xueliang Lu

Abstract Pumping efficiency and rotordynamic stability are paramount to subsea multiphase pump operation since, during the life of a well, the process fluid transitions from a pure liquid to a mixture of gas in liquid to just gas. Circumferentially grooved seals commonly serve as balance pistons in pumps while also restricting secondary flow. Prior experimental results obtained with a grooved seal operating with a mixture of air and mineral oil show the seal rotordynamic force coefficients vary significantly with the gas volume fraction (GVF). This paper, complementing an exhaustive experimental program, presents a computational fluid dynamics (CFD) analysis to predict the leakage, drag power, and dynamic force coefficients of a circumferentially grooved seal supplied with air in oil mixture with a GVF varying from 0 to 0.7. The test seal has fourteen grooves, an overall axial length of 43.6 mm and a radial clearance of 0.211 mm. The 127 mm diameter rotor spins at constant angular speed (Ω = 3,500 rpm). The mixture enters the seal at a supply pressure (Pin) of 2.9 bar(a), and the seal exit pressure (Pout) is 1 bar(a). The CFD two-phase flow simulations utilize the Euler-Euler multiphase model to predict the mass flow rate and the pressure field as a function of the operating conditions. Using a multi-frequency shaft orbit motion method, the CFD simulations deliver the variations of reaction force on the rotor with respect to the excitation frequency. For a pure liquid condition (GVF = 0), both the CFD and experimental results produce constant stiffness, damping and added mass coefficients. The experimental and CFD results demonstrate the seal rotordynamic force coefficients are quite sensitive to the gas volume fraction (GVF). When introducing a small amount of air into the oil (GVF = 0.1), the direct damping coefficient increases by approximately 10%. For operation with a mixture with inlet GVF > 0.1, the cross-coupled stiffness coefficients develop strong frequency dependent characteristics. In contrast, the direct damping coefficient has a negligible variation with excitation frequency. The CFD predictions, as well as the experimental results, evidence that air injection in a liquid stream can significantly change the seal rotordynamic characteristics, and thus can affect the rotordynamic stability of a pump. An accurate CFD analysis thus enables engineers to design reliable grooved seals operating under two-phase flow conditions.


Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


Sign in / Sign up

Export Citation Format

Share Document