CFD and Experiment Investigation of the Mixing Characteristics of Non-Newtonian Fluids in a Stirred Vessel

Author(s):  
Peng Wang ◽  
Thomas Reviol ◽  
Haikun Ren ◽  
Martin Böhle

The mixing performance of a novel design propeller fixed at a position with the angle of −10° combine the inference of the variety of rotation speed and rheology properties were investigated using an ultrasonic Doppler anemometer (UDA) and CFD simulation to investigate the flow patterns and the power consumption in a mixing vessel. The fluids of interest in this research are CMC fluids, which is a type of Walocel CRT 40,000PA powder was added into water to prepare the solutions with the mass concentration which performed shear thinning non-Newtonian fluid properties. As the viscosity of the non-Newtonian fluids varies from the shear rate, rather than a constant value. Therefore, a non-Newtonian power-law model has been selected to describe the properties of the non-Newtonian fluids, and combine with six turbulence models (the standard k-ω model, RNG k-ε, standard k-ε, Realizable k-ε, SST k-ω and Reynolds stress model (RSM))for mechanical agitation of non-Newtonian fluids. Through comparing experiment results, the SST k-ω and Reynolds stress model (RSM) are found more physical than other turbulence models at the design operating point. Furthermore, the CFD simulation results from Reynolds stress model (RSM) and the SST models were validated with the experimental results over the range of rotation speed (small, design, and large rotation speeds), and show that the simulated propeller torque and flow patterns agreed very well with experimental measurements. The velocity field distribution with different operating conditions within selected planes also have been compared with each other and found that for different rheology concentrations and operating conditions, the turbulence model should be properly chosen. The model for simulating non-Newtonian fluid in a stirred vessel in this study can lay a foundation for further optimum research.

2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


Author(s):  
G. A. Gerolymos ◽  
I. Vallet

The purpose of this paper is to present a numerical methodology for the computation of complex 3-D turbomachinery flows using advanced multiequation turbulence closures, including full 7-equation Reynolds-stress transport models. A general frame-work describing the turbulence models and possible future improvements is presented. The flow equations are discretized on structured multiblock grids, using an upwind biased (O[Δx3] MUSCL reconstruction) finite-volume scheme. Time-integration uses a local-dual-time-stepping implicit procedure, with internal subiterations. Computational efficiency is achieved by a specific approximate factorization of the implicit subiterations, designed to minimize the computational cost of the turbulence-transport-equations. Convergence is still accelerated using a mean-flow-multigrid full-approximation-scheme method, where multigrid is applied on the mean-flow-variables only. Speed-ups of a factor 3 are obtained using 3 levels of multigrid (fine + 2 coarser grids). Computational examples are presented using several Reynolds-stress model variants (and also a baseline k–ε model), for various turbomachinery configurations, and compared with available experimental measurements.


Author(s):  
Stefan Voigt ◽  
Berthold Noll ◽  
Manfred Aigner

The present paper deals with the detailed numerical simulation of film cooling including conjugate heat transfer. Five different turbulence models are used to simulate a film cooling configuration. The models include three steady and two unsteady models. The steady RANS models are the Shear stress transport (SST) model of Menter, the Reynolds stress model of Speziale, Sarkar and Gatski and a k-ε explicit algebraic Reynolds stress model. The unsteady models are a URANS formulation of the SST model and a scale-adaptive simulation (SAS). The solver used in this study is the commercial code ANSYS CFX 11.0. The results are compared to available experimental data. These data include velocity and turbulence intensity fields in several planes. It is shown that the steady RANS approach has difficulties with predicting the flow field due to the high 3-dimensional unsteadiness. The URANS and SAS simulations on the other hand show good agreement with the experimental data. The deviation from the experimental data in velocity values in the steady cases is about 20% whereas the error in the unsteady cases is below 10%.


Author(s):  
Huitao Yang ◽  
Sumanta Acharya ◽  
Srinath V. Ekkad ◽  
Chander Prakash ◽  
Ron Bunker

Numerical calculations are performed to simulate the tip leakage flow and heat transfer on the GE-E3 High-Pressure-Turbine (HPT) rotor blade. The calculations are performed for a single blade with periodic conditions imposed along the two boundaries in the circumferential-pitch direction. Cases considered are a flat blade tip at three different tip gap clearances of 1%, 1.5% and 2.5% of the blade span. The numerical results are obtained for two different pressure ratios (ratio of inlet total pressure to exit static pressure) of 1.2 and 1.32 and an inlet turbulence level of 6.1%. To explore the effect of turbulence models on the heat transfer results, three different models of increasing complexity and computational effort (standard high Re k-ε model, RNG k-ε and Reynolds Stress Model) are investigated. The predicted tip heat transfer results are compared with the experimental data of Azad [1], and show satisfactory agreement with the data. Hear transfer predictions for all three turbulence models are comparable, and no significant improvements are obtained with the Reynolds-stress model.


2000 ◽  
Vol 122 (4) ◽  
pp. 666-676 ◽  
Author(s):  
R. W. Radomsky ◽  
K. A. Thole

As highly turbulent flow passes through downstream airfoil passages in a gas turbine engine, it is subjected to a complex geometry designed to accelerate and turn the flow. This acceleration and streamline curvature subject the turbulent flow to high mean flow strains. This paper presents both experimental measurements and computational predictions for highly turbulent flow as it progresses through a passage of a gas turbine stator vane. Three-component velocity fields at the vane midspan were measured for inlet turbulence levels of 0.6%, 10%, and 19.5%. The turbulent kinetic energy increased through the passage by 130% for the 10% inlet turbulence and, because the dissipation rate was higher for the 19.5% inlet turbulence, the turbulent kinetic energy increased by only 31%. With a mean flow acceleration of five through the passage, the exiting local turbulence levels were 3% and 6% for the respective 10% and 19.5% inlet turbulence levels. Computational RANS predictions were compared with the measurements using four different turbulence models including the k-ε, Renormalization Group (RNG) k-ε, realizable k-ε, and Reynolds stress model. The results indicate that the predictions using the Reynolds stress model most closely agreed with the measurements as compared with the other turbulence models with better agreement for the 10% case than the 19.5% case. [S0098-2202(00)00804-X]


2017 ◽  
Vol 1 ◽  
pp. 2II890 ◽  
Author(s):  
Lee Gibson ◽  
Lee Galloway ◽  
Sung in Kim ◽  
Stephen Spence

Abstract Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process also demands that the turbulence model selected be robust and numerically stable with short simulation times. In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open test case, the centrifugal compressor “Radiver”, to compare the results of three eddy-viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were: (i) Spalart-Allmaras (SA), (ii) Shear Stress Transport (SST), (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the near surge operating point P1, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global performance and local flow features.


2018 ◽  
Vol 11 (22) ◽  
pp. 41
Author(s):  
Mehdi Chamanara ◽  
Hassan Ghassemi ◽  
Manouchehr Fadavie ◽  
Mohammad Aref Ghassemi

In the present study, the effect of the duct angle and propeller location on the hydrodynamic characteristics of the ducted propeller using Reynolds-Averaged Navier Stokes (RANS) method is reported. A Kaplan type propeller is selected with a 19A duct. The ducted propeller is analyzed by three turbulence models including the k-ε standard, k-ω SST and Reynolds stress model (RSM). The numerical results are compared with experimental data. The effects of the duct angle and the location of the propeller inside the propeller are presented and discussed.


1995 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

A three-dimensional Navier-Stokes procedure has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-ε model and a zonal k-ε/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. The algebraic Reynolds stress model is used only in the endwall region to represent the anisotropy of turbulence. A four-stage Runge-Kutta scheme is used for time-integration of both the mean-flow and the turbulence transport equations. For the turbine nozzle flow, comprehensive comparisons between the predictions and the experimental data obtained at Penn State show that most features of the vortex-dominated endwall flow, as well as nozzle wake structure, have been captured well by the numerical procedure. An assessment of the performance of the turbulence models has been carried out The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the ARSM model.


2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880531 ◽  
Author(s):  
Jiandong Wu ◽  
Jiyun Xu ◽  
Hao Wang

Micron droplet deposition onto a wall in an impinging jet is important for various applications like spray cooling, coating, fuel injection, and erosion. The impinging process is featured by abrupt velocity changes and thus complicated behaviors of the droplets. Either modeling or experiment for the droplet behaviors is still challenging. This study conducted numerical modeling and compared with an existing experiment in which concentric dual-ring deposition patterns of micron droplets were observed on the impinging plate. The modeling fully took into account of the droplet motion in the turbulent flow, the collision between the droplets and the plate, as well as the collision, that is, agglomeration among droplets. Different turbulence models, that is, the v2− f model, standard k–ε model, and Reynolds stress model, were compared. The results show that the k–ε model failed to capture the turbulent flow structures and overpredicted the turbulent fluctuations near the wall. Reynolds stress model had a good performance in flow field simulation but still failed to reproduce the dual-ring deposition pattern. Only the v2− f model reproduced the dual-ring pattern when coupled with droplet collision models. The results echoed the excellent performance of the v2− f model in the heat transfer calculation for the impinging problems. The agglomeration among droplets has insignificant influence on the deposition.


Author(s):  
X. Gu ◽  
H.-W. Wu ◽  
H. J. Schock ◽  
T. I.-P. Shih

Computations were performed by using Version 5.5 of the Fluent-UNS code to compare two turbulence models in predicting the three-dimensional flow and heat transfer in a smooth duct of square cross section with a small radius of curvature 180-degree bend under rotating and non-rotating conditions (Re = 25,000; Ro = 0.0 and 0.24). The two turbulence models investigated are the standard k-ε model and a Reynolds stress model. For both models, the two-layer low-Reynolds model of Chen and Patel was used in the near-wall region. Results obtained show that though the k-ε model predicts turbulence quantities incorrectly, the predicted velocity and temperature fields and the surface heat transfer are similar to those from the Reynolds stress model when there is no rotation. When there is rotation, there is significant difference in the predicted surface heat transfer on the leading surface. But, the predicted flow field is still qualitatively similar.


Sign in / Sign up

Export Citation Format

Share Document